To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a new subgroup In(G) in any group G of finite Morley rank. This definably characteristic subgroup is the smallest normal subgroup of G from which we can hope to build a geometry over the quotient group G/ In(G). We say that G is a geometric group if In(G) is trivial.
This paper is a discussion of a conjecture which states that every geometric group G of finite Morley rank is definably linear over a ring K1 ⊕…⊕ Kn where K1,…,Kn are some interpretable fields. This linearity conjecture seems to generalize the Cherlin–Zil'ber conjecture in a very large class of groups of finite Morley rank.
We show that, if this linearity conjecture is true, then there is a Rosenlicht theorem for groups of finite Morley rank, in the sense that the quotient group of any connected group of finite Morley rank by its hypercentre is definably linear.
We make several conjectures, and prove some results, pertaining to conjugacy classes of a given size in finite groups, especially in p-groups and 2-groups.
An enumeration result for orientably regular hypermaps of a given type with automorphism groups isomorphic to PSL(2,q) or PGL(2,q) can be extracted from a 1969 paper by Sah. We extend the investigation to orientable reflexible hypermaps and to nonorientable regular hypermaps, providing many more details about the associated computations and explicit generating sets for the associated groups.
We derive bivariate polynomial formulae for cocycles and coboundaries in Z2(ℤpn,ℤpn), and a basis for the (pn−1−n)-dimensional GF(pn)-space of coboundaries. When p=2 we determine a basis for the -dimensional GF(2n)-space of cocycles and show that each cocycle has a unique decomposition as a direct sum of a coboundary and a multiplicative cocycle of restricted form.
Let G be isomorphic to a group H satisfying SL(d,q)≤H≤GL(d,q) and let W be an irreducible FqG-module of dimension at most d2. We present a Las Vegas polynomial-time algorithm which takes as input W and constructs a d-dimensional projective representation of G.
We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian.
While the classification project for the simple groups of finite Morley rank is unlikely toproduce a classification of the simple groups of finite Morley rank, the enterprise has already arrived at a considerably closer approximation to that ideal goal than could have been realistically anticipated, with a mix of results of several flavors, some classificatory and others more structural, which can be combined when the stars are suitably aligned to produce results at a level of generality which, in parallel areas of group theory, would normally require either some additional geometric structure, or an explicit classification. And Bruno Poizat is generally awesome, though sometimes he goes too far.
In this note we first prove that, for a positive integer n>1 with n≠p or p2 where p is a prime, there exists a transitive group of degree n without regular subgroups. Then we look at 2-closed transitive groups without regular subgroups, and pose two questions and a problem for further study.
We establish an identification result of the projective special linear group of dimension 2among a certain class of groups the Morley rank of which is finite.
For a group G and a real number x≥1 we let sG(x) denote the number of indices ≤x of subgroups of G. We call the function sG the subgroup density of G, and initiate a study of its asymptotics and its relation to the algebraic structure of G. We also count indices ≤x of maximal subgroups of G, and relate it to symmetric and alternating quotients of G.
A star is a planar set of three lines through a common point in which the angle between each pair is 60∘.A set of lines through a point in which the angle between each pair of lines is 60 or 90∘ is star-closed if for every pair of its lines at 60∘ the set contains the third line of the star. In 1976 Cameron, Goethals, Seidel and Shult showed that the indecomposable star-closed sets in Euclidean space are the root systems of types An, Dn, E6, E7 and E8. This result was a key part of their determination of all graphs with least eigenvalue −2. Subsequently, Cvetković, Rowlinson and Simić determined all star-closed extensions of these line systems. We generalize this result on extensions of line systems to complex n-space equipped with a hermitian inner product. There is one further infinite family, and two exceptional types arising from Burkhardt and Mitchell’s complex reflection groups in dimensions five and six. The proof is a geometric version of Mitchell’s classification of complex reflection groups in dimensions greater than four.
Let 𝒯X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X. Write then TE(X) is a subsemigroup of 𝒯X. In this paper, we endow TE(X) with the so-called natural order and determine when two elements of TE(X) are related under this order, then find out elements of TE(X) which are compatible with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements are described.
A submonoid S of a monoid M is said to be cofull if it contains the group of units of M. We extract from the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull submonoid of the coset monoid of its group of units, and show further that this condition is necessary. This yields a simple description of the class of finite monoids which embed in the coset monoids of their group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister, ‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum20 (1980), 255–267] which states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the symmetric group on X. We also explore examples, which are necessarily infinite, of embeddings whose images are not cofull.
Let α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences between conditions on chief factors of G and structural characterizations of the α-residual and theα-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
For a numerical semigroup S, a positive integer a and anonzero element m of S, we define a new numerical semigroup R(S,a,m) and call it the (a,m)-rotation of S. In this paper we study the Frobenius number and the singularity degree of R(S,a,m). Moreover, we observe that the rotations of ℕ are precisely the modular numerical semigroups.
Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it must satisfy one of three conditions: (i) A2 ∈ V; (ii) (iii) B2∈V but The conditions (i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
In 1975, Symons described the automorphisms of the semigroup T(X,Y ) consisting of all total transformations from a set X into a fixed subset Y of X. Recently Sanwong, Singha and Sullivan determined all maximal (and all minimal) congruences on T(X,Y ), and Sommanee studied Green’s relations in T(X,Y ). Here, we describe Green’s relations and ideals for the semigroup T(V,W) consisting of all linear transformations from a vector space V into a fixed subspace W of V.
This paper is a brief survey of recent results and some open problems related to linear groups of finite Morley rank, an area of research where Bruno Poizat's impact is very prominent. As a sign of respect to his strongly expressed views that mathematics has to be done, written and pulished only in the native tongue of the immediate author–the scribe, in effect–of the text, I insist on writing my paper in Russian, even if the results presented belong to a small but multilingual community of researchers of American, British, French, German, Kazakh, Russian, Turkish origin. To emphasise even further the linguistic subtleties involved, I use British spelling in the English fragments of my text.