To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a formula for the character of the representation of the symmetric group Sn on each isotypic component of the cohomology of the set of regular elements of a maximal torus of SLn, with respect to the action of the centre.
The finite generation and presentation of Schützenberger products of semigroups are investigated. A general necessary and sufficient condition is established for finite generation. The Schützenberger product of two groups is finitely presented as an inverse semigroup if and only if the groups are finitely presented, but is not finitely presented as a semigroup unless both groups are finite.
An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature (), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.
An element in a free group is a proper power if and only if it is a proper power in every nilpotent factor group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent group is a proper power.
Projective planes of order n with a coUineation group admitting a 2-transitive orbit on a line of length at least n/2 are investigated and new examples are provided.
Completely regular semigroups CR are regarded here as algebras with multiplication and the unary operation of inversion. Their lattice of varieties is denoted by L(CR). Let B denote the variety of bands and L(B) the lattice of its subvarieties. The mapping V → V ∩ B is a complete homomorphism of L(CR) onto L(B). The congruence induced by it has classes that are intervals, say VB = [VB, VB] for V ∈ L(CR). Here VB = V ∩ B. We characterize VB in several ways, the principal one being an inductive way of constructing bases for v-irreducible band varieties. We term the latter canonical. We perform a similar analysis for the intersection of these varieties with the varieties BG, OBG and B.
Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.
We call an algebraic group monothetic if it possesses a dense cyclic subgroup. For an arbitrary field k we describe the structure of all, not necessarily affine, monothetic k-groups G and determine in which cases G has a k-rational generator.
Let G be a finite group, K a field, and V a finite-dimensional K G-module. Write L(V) for the free Lie algebra on V; similarly, let M ( V) be the free metabelian Lie algebra. The action of G extends naturally to these algebras, so they become KG-modules, which are direct sums of finite-dimensional submodules. This paper explores whether indecomposable direct summands of such a KG-module (for some specific choices of G, K and V) must fall into finitely many isomorphism classes. Of course this is not a question unless there exist infinitely many isomorphism classes of indecomposable KG-modules (that is, K has positive characteristic p and the Sylow p-subgroups of G are non-cyclic) and dim V > 1.
The first two results show that the answer is positive for M(V) when K is finite and dim V = 2, but negative when G is the Klein four-group, the characteristic of K is 2, and V is the unique 3-dimnsional submodule of the regular module D. In the third result, G is again the Klein four-group, K is any field of charateristic 2 with more than 2 elements, V is any faithfull module of dimension 2, and B is the unique 3-dimensional quotient of D; the answer is positive for L(V) if and only if it is positive for each of L(B), L(D), and L(V ⊗ V).
In this paper we investigate non-central elements of the Iwahori-Hecke algebra of the symmetric group whose squares are central. In particular, we describe a commutative subalgebra generated by certain non-central square roots of central elements, and the generic existence of a rank-three submodule of the Hecke algebra contained in the square root of the centre, but not in the centre. The generators for this commutative subalgebra include the longest word and elements related to trivial and sign characters of the Hecke algebra. We find elegant expressions for the squares of such generators in terms of both the minimal basis of the centre and the elementary symmetric functions of Murphy elements.
This paper concerns parabolic submonoids of a class of monoids known as singular Artin monoids. The latter class includes the singular braid monoid— a geometric extension of the braid group, which was created for the sole purpose of studying Vassiliev invariants in knot theory. However, those monoids may also be construed (and indeed, are defined) as a formal extension of Artin groups which, in turn, naturally generalise braid groups. It is the case, by van der Lek and Paris, that standard parabolic subgroups of Artin groups are canonically isomorphic to Artin groups. This naturally invites us to consider whether the same holds for parabolic submonoids of singular Artin monoids. We show that it is in fact true when the corresponding Coxeter matrix is of ‘type FC’ hence generalising Corran's result in the ‘finite type’ case.
The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomorphisms between its inverse subsemigroups. We prove that a tightly connected fundamental inverse semigroup S with no isolated nontrivial subgroups is lattice determined ‘modulo semilattices’ and if T is an inverse semigroup whose partial automorphism monoid is isomorphic to that of S, then either S and T are isomorphic or they are dually isomorphic chains relative to the natural partial order; a similar result holds if T is any semigroup and the inverse monoids consisting of all isomorphisms between subsemigroups of S and T, respectively, are isomorphic. Moreover, for these results to hold, the conditions that S be tightly connected and have no isolated nontrivial subgroups are essential.
An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. For a connected cubic symmetric graph X of order 2pn for an odd prime p, we show that if p ≠ 5, 7 then every Sylow p-subgroup of the full automorphism group Aut(X) of X is normal, and if p ≠3 then every s-regular subgroup of Aut(X) having a normal Sylow p-subgroup contains an (s − 1)-regular subgroup for each 1 ≦ s ≦ 5. As an application, we show that every connected cubic symmetric graph of order 2pn is a Cayley graph if p > 5 and we classify the s-regular cubic graphs of order 2p2 for each 1≦ s≦ 5 and each prime p. as a continuation of the authors' classification of 1-regular cubic graphs of order 2p2. The same classification of those of order 2p is also done.
Palindromes are those reduced words of free products of groups that coincide with their reverse words. We prove that a free product of groups G has infinite palindromic width, provided that G is not the free product of two cyclic groups of order two (Theorem 2.4). This means that there is no uniform bound k such that every element of G is a product of at most k palindromes. Earlier, the similar fact was established for non-abelian free groups. The proof of Theorem 2.4 makes use of the ideas by Rhemtulla developed for the study of the widths of verbal subgroups of free products.
Let G be a finite p-group, and let M(G) be the subgroup generated by the non-central conjugacy classes of G of minimal size. We prove that this subgroup has class at most 3. A similar result is noted for nilpotent Lie algebras.
Let (M, G) be a pair of groups, in which M is a normal subgroup of G such that G/M and M/Z(M, G) are of orders pm and pn. respectively. In 1998, Ellis proved that the commutator subgroup [M, G] has order at most pn(n + 2 m−1)/2.
In the present paper by assuming /[M, G] = pn(n+2m−1)/2, we determine the pair (M, G). An upper bound is obtained for the Schur multiplier of the pair (M, G), which generalizes the work of Green (1956).
It is shown that the complex semigroup algebra of a free monoid of rank at least two is *-primitive, where * denotes the involution on the algebra induced by word-reversal on the monoid.
In this paper we determine the smallest equivalence relation on a multialgebra for which the factor multialgebra is a universal algebra satisfying a given identity. We also establish an important property for the factor multialgebra (of a multialgebra) modulo this relation.
To any given balanced semigroup identity U ≈ W a number of polyhedral convex cones are associated. In this setting an algorithm is proposed which determines whether the given identity is satisfied in the bicylic semigroup or in the semigroup . The semigroups BC and E deserve our attention because a semigroup variety contains a simple semigroup which is not completely simple (respectively, which is idempotent free) if and only if this variety contains BC (respectively, E). Therefore, for a given identity U ≈ W it is decidable whether or not the variety determined by U ≈ W contains a simple semigroup which is not completely simple (respectively, which is idempotent free).