We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The concepts nilpotent element, s-prime ideal and s-semi-prime ideal are defined for Ω-groups. The class {G|G is a nil Ω-group} is a Kurosh-Amitsur radical class. The nil radical of an Ω-group coincides with the intersection of all the s-prime ideals. Furthermore an ideal P of G is an s-semi-prime ideal if and only if G/P has no non-zero nil ideals.
Some new classes of finite groups with zero deficiency presentations, that is to say presentations with as few defining relations as generators, are exhibited. The presentations require 3 generators and 3 defining relations; the groups so presented can also be generated by 2 of their elements, but it is not known whether they can be defined by 2 relations in these generators, and it is conjectured that in general they can not. The groups themselves are direct products or central products of binary polyhedral groups with cyclic groups, the order of the cyclic factor being arbitrary.
A Fitting class of finite soluble groups is one closed under the formation of normal subgroups and products of normal subgroups. It is shown that the Fitting classes of metanilpotent groups which are quotient group closed as well are primitive saturated formuations.
A natural equivalence θ on the lattice of congruences λ(S) of a semigroup S is studied. For any eventually regular semigroup S, it is shown that θ is a congruence, each θ-class is a complete sublattice of λ(S) and the maximum element in each θ-class is determined. 1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 10.
We determine which permutative varieties are saturated and classify all nontrivial permutation identities for the class of all globally idempotent semigroups.
Centre-by-metabelian groups with the maximal condition for normal subgroups are exhibited which (a) are residually finite but have quotient groups which are not residually finite; and (b) have all quotients residually finite but are not abelian-by-polycyclic.
Gaschütz has introduced the concept of a product of a Schunck class and a (saturated) formation (differing from the usual product of classes) and has shown that this product is a Schunck class provided that both of its factors consist of finite soluble groups. We investigate the same question in the context of arbitrary finite groups.
Completely simple semigroups form a variety, , of algebras with the operations of multiplication and inversion. It is known that the mapping , where is the variety of all groups, is an isomorphism of the lattice of all subvarieties of onto a subdirect product of the lattice of subvarieties of and the interval . We consider embeddings of into certain direct products on the above pattern with rectangular bands, rectangular groups and central completely simple semigroups in place of groups.
Connexions are sought between the subvarieties of a variety U of groups and the subvarieties of the variety of all groups which are central extensions by groups in U, in the case when U has the form . Here , is the variety of abelian groups of exponent dividing r and Bis a variety of soluble groups of finite exponent.
A verbal product is introduced for a particular class of varieties of inverse semigroups and this product is shown to be associative. As well, the structure of this class is examined.
A new arrow notation is used to describe biordered sets. Biordered sets are characterized as biordered subsets of the partial algebras formed by the idempotents of semigroups. Thus it can be shown that in the free semigroup on a biordered set factored out by the equations of the biordered set there is no collapse of idempotents and no new arrows.
We find the atoms of certain subclasses of varieties of finite semigroups and the corresponding varieties of languages. For example we give a new description of languages whose syntactic monoids are R-trivial and idempotent. We also describe the least variety containing all commutative semigroups and at least one non-commutative semigroup. Finally we extend to varieties of finite semigroups some classical results about semilattice decomposition of semigroups.
This is an investigation of whether a group epimorphism maps the maximal perfect subgroup of its domain onto that of its image. It is shown how the question arises naturally from considerations of algebraic K-theory and Quillen's plus-construction. Some sufficient conditions are obtained; these relate to the upper central series, or alternatively the derived series, of the domain. By means of topological/homological techniques, the results are then sharpened to provide, in certain circumstances, conditions which are necessary as well as sufficient.
In this paper we investigate the p-periodicity of the S-arithmetic groups G = GL(n, Os(K)) and G1 = SL(n, Os(K)) where Os(K) is the ring of S-integers of a number field K (cf. [12, 13]; S is a finite set of places in K including the infinite places). These groups are known to be virtually of finite (cohomological) dimension, and thus the concept of p-periodicity is defined; it refers to a rational prime p and to the p-primary component Ĥi(G, A, p) of the Farrell-Tate cohomology Ĥi(G, A) with respect to an arbitrary G-module A. We recall that Ĥi coincides with the usual cohomology Hi for all i above the virtual dimension of G, and that in the case of a finite group (i.e., a group of virtual dimension zero) the Ĥi, i ∈ℤ, are the usual Tate cohomology groups. The group G is called p-periodic if Ĥi(G, A, p) is periodic in i, for all A, and the smallest corresponding period is then simply called the p-period of G. If G has no p-torsion, the p-primary component of all its Ĥi is 0, and thus G is trivially p-periodic.
A variant of Kurosh-Amitsur radical theory is developed for algebras with a collection of (finitary) operations ω, all of which are idempotent, that is satisfy the condition ω(x, x,…, x) = x. In such algebras, all classes of any congruence are subalgebras. In place of a largest normal radical subobject, a largest congruence with radical congruence classes is considered. In congruence-permutable varieties the parallels with conventional radical theory are most striking.
A category V is called universal (or binding) if every category of algebras is isomorphic to a full subcategory of V. The main result states that a semigroup variety V is universal if and only if it contains all commutative semigroups and fails the identity xnyn = (xy)n for every n ≥ 1. Further-more, the universality of a semigroup variety V is equivalent to the existence in V of a nontrivial semigroup whose endomorphism monoid is trivial, and also to the representability of every monoid as the monoid of all endomorphisms of some semigroup in V. Every universal semigroup variety contains a minimal one with this property while there is no smallest universal semigroup variety.
We establish a necessary condition (E) for a semigroup variety to be closed under the taking of epimorphisms and a necessary condition (S) for a variety to consist entirely of saturated semigroups. Condition (S) is shown to be sufficient for heterotypical varieties and a stronger condition (S′) is shown to be sufficient for homotypical varieties.
Let G be transitive permutation group of degree n and let K be a nontrivial pronormal subgroup of G (that is, for all g in G, K and Kg are conjugate in (K, Kg)). It is shown that K can fix at most ½(n – 1) points. Moreover if K fixes exactly ½(n – 1) points then G is either An or Sn, or GL(d, 2) in its natural representation where n = 2d-1 ≥ 7. Connections with a result of Michael O'Nan are dicussed, and an application to the Sylow subgroups of a one point stabilizer is given.