To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove Lp norm convergence for (appropriate truncations of) the Fourier series arising from the Dirichlet Laplacian eigenfunctions on three types of triangular domains in $\mathbb{R}^2$: (i) the 45-90-45 triangle, (ii) the equilateral triangle and (iii) the hemiequilateral triangle (i.e. half an equilateral triangle cut along its height). The limitations of our argument to these three types are discussed in light of Lamé’s Theorem and the image method.
where $\Lambda (f)=\sup \,\{\lambda>0\colon f(\lambda )>0\}$ and the infimum is taken over all nontrivial even entire functions f of exponential type that are Jacobi transforms of positive measures with supports on an interval. Here, if $m\ge 2$, then we additionally assume that $\int _{0}^{\infty }\lambda ^{2k}f(\lambda )\,d\sigma (\lambda )=0$ for $k=0,\dots ,m-2$.
We prove that admissible functions for this problem are positive-definite with respect to the inverse Jacobi transform. The solution of Logan’s problem was known only when $\alpha =\beta =-1/2$. We find a unique (up to multiplication by a positive constant) extremizer $f_m$. The corresponding Logan problem for the Fourier transform on the hyperboloid $\mathbb {H}^{d}$ is also solved. Using the properties of the extremizer $f_m$ allows us to give an upper estimate of the length of a minimal interval containing not less than n zeros of positive definite functions. Finally, we show that the Jacobi functions form the Chebyshev systems.
We present a unified theory for the almost periodicity of functions with values in an arbitrary Banach space, measures and distributions via almost periodic elements for the action of a locally compact abelian group on a uniform topological space. We discuss the relation between Bohr- and Bochner-type almost periodicity, and similar conditions, and how the equivalence among such conditions relates to properties of the group action and the uniformity. We complete the paper by demonstrating how various examples considered earlier all fit in our framework.
Let $M=(\begin {smallmatrix}\rho ^{-1} & 0 \\0 & \rho ^{-1} \\\end {smallmatrix})$ be an expanding real matrix with $0<\rho <1$, and let ${\mathcal D}_n=\{(\begin {smallmatrix} 0\\ 0 \end {smallmatrix}),(\begin {smallmatrix} \sigma _n\\ 0 \end {smallmatrix}),(\begin {smallmatrix} 0\\ \gamma _n \end {smallmatrix})\}$ be digit sets with $\sigma _n,\gamma _n\in \{-1,1\}$ for each $n\ge 1$. Then the infinite convolution
is called a Moran–Sierpinski measure. We give a necessary and sufficient condition for $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ to admit an infinite orthogonal set of exponential functions. Furthermore, we give the exact cardinality of orthogonal exponential functions in $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ when $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ does not admit any infinite orthogonal set of exponential functions based on whether $\rho $ is a trinomial number or not.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
In this paper, we study divergence properties of the Fourier series on Cantor-type fractal measure, also called the mock Fourier series. We give a sufficient condition under which the mock Fourier series for doubling spectral measure is divergent on a set of strictly positive measure. In particular, there exists an example of the quarter Cantor measure whose mock Fourier sums are not almost everywhere convergent.
We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus $\mathbb {T}^n$ or Boolean cubes $\{-1,1\}^N$. Our more abstract approach based on local Banach space theory has the advantage that it allows to consider more general compact abelian groups instead of only the multidimensional torus. As an application, we show that various recent $\ell _1$-multiplier theorems for trigonometric polynomials in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund inequality.
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related to the boundedness of resolvents of the Laplacian and the boundedness of $L^{p}$ norms of eigenfunctions of the Laplacian. We formulate a conjecture and partially prove it.
We develop a new analytical solution of a three-dimensional atmospheric pollutant dispersion. The main idea is to subdivide vertically the planetary boundary layer into sub-layers, where the wind speed and eddy diffusivity assume average values for each sub-layer. Basically, the model is assessed and validated using data obtained from the Copenhagen diffusion and Prairie Grass experiments. Our findings show that there is a good agreement between the predicted and observed crosswind-integrated concentrations. Moreover, the calculated statistical indices are within the range of acceptable model performance.
We prove that, given $2< p<\infty$, the Fourier coefficients of functions in $L_2(\mathbb {T}, |t|^{1-2/p}\,{\rm d}t)$ belong to $\ell _p$, and that, given $1< p<2$, the Fourier series of sequences in $\ell _p$ belong to $L_2(\mathbb {T}, \vert {t}\vert ^{2/p-1}\,{\rm d}t)$. Then, we apply these results to the study of conditional Schauder bases and conditional almost greedy bases in Banach spaces. Specifically, we prove that, for every $1< p<\infty$ and every $0\le \alpha <1$, there is a Schauder basis of $\ell _p$ whose conditionality constants grow as $(m^{\alpha })_{m=1}^{\infty }$, and there is an almost greedy basis of $\ell _p$ whose conditionality constants grow as $((\log m)^{\alpha })_{m=2}^{\infty }$.
In this paper, we consider an equivalence relation on the space $AP(\mathbb {R},X)$ of almost periodic functions with values in a prefixed Banach space X. In this context, it is known that the normality or Bochner-type property, which characterizes these functions, is based on the relative compactness of the family of translates. Now, we prove that every equivalence class is sequentially compact and the family of translates of a function belonging to this subspace is dense in its own class, i.e., the condition of almost periodicity of a function $f\in AP(\mathbb {R},X)$ yields that every sequence of translates of f has a subsequence that converges to a function equivalent to f. This extends previous work by the same authors on the case of numerical almost periodic functions.
We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.
For functions in $C^k(\mathbb {R})$ which commute with a translation, we prove a theorem on approximation by entire functions which commute with the same translation, with a requirement that the values of the entire function and its derivatives on a specified countable set belong to specified dense sets. Using this theorem, we show that if A and B are countable dense subsets of the unit circle $T\subseteq \mathbb {C}$ with $1\notin A$, $1\notin B$, then there is an analytic function $h\colon \mathbb {C}\setminus \{0\}\to \mathbb {C}$ that restricts to an order isomorphism of the arc $T\setminus \{1\}$ onto itself and satisfies $h(A)=B$ and $h'(z)\not =0$ when $z\in T$. This answers a question of P. M. Gauthier.
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.
Let $M=$ diag $(\rho _1,\rho _2)\in M_{2}({\mathbb R})$ be an expanding matrix and Let $\{D_n\}_{n=1}^{\infty }$ be a sequence of digit sets with $D_n=\left \{(0, 0)^T,\,\,\,(a_n, 0 )^T, \,\,\, (0, b_n )^T \right \}$, where $a_n, b_n\in \{-1,1\}$. The associated Borel probability measure
is called a Moran Sierpinski-type measure. In this paper, we show that $\mu _{M, \{D_n\}}$ is a spectral measure if and only if $3\mid \rho _i$ for each $i=1, 2$. The special case is the Sierpinski-type measure with $a_n=b_n=1$ for all $n\in {\mathbb N}$, which is proved by Dai et al. [Appl. Comput. Harmon. Anal. (2020), https://doi.org/10.1016/j.acha.2019.12.001].
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
By developing a Green's function representation for the solution of the boundary value problem we study existence, uniqueness, and qualitative properties (e.g., positivity or monotonicity) of solutions to these problems. We apply our methods to fractional order differential equations. We also demonstrate an application of our methodology both to convolution equations with nonlocal boundary conditions as well as those with a nonlocal term in the convolution equation itself.
We obtain estimates on the uniform convergence rate of the Birkhoff average of a continuous observable over torus translations and affine skew product toral transformations. The convergence rate depends explicitly on the modulus of continuity of the observable and on the arithmetic properties of the frequency defining the transformation. Furthermore, we show that for the one-dimensional torus translation, these estimates are nearly optimal.
Truncating the Fourier transform averaged by means of a generalized Hausdorff operator, we approximate functions and the adjoint to that Hausdorff operator of the given function. We find estimates for the rate of approximation in various metrics in terms of the parameter of truncation and the components of the Hausdorff operator. Explicit rates of approximation of functions and comparison with approximate identities are given in the case of continuous functions from the class $\text {Lip }\alpha $.