To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper certain Turán-type inequalities for some Lommel functions of the first kind are deduced. The key tools in our proofs are the infinite product representation for these Lommel functions of the first kind, a classical result of Pólya on the zeros of some particular entire functions, and the connection of these Lommel functions with the so-called Laguerre–Pólya class of entire functions. Moreover, it is shown that in some cases Steinig's results on the sign of Lommel functions of the first kind combined with the so-called monotone form of l’Hospital's rule can be used in the proof of the corresponding Turán-type inequalities.
Let $X={\mathcal{C}}_{0}(2{\it\pi})$ or $X=L_{1}[0,2{\it\pi}]$. Denote by ${\rm\Pi}_{n}$ the space of all trigonometric polynomials of degree less than or equal to $n$. The aim of this paper is to prove the minimality of the norm of de la Vallée Poussin’s operator in the set of generalised projections ${\mathcal{P}}_{{\rm\Pi}_{n}}(X,\,{\rm\Pi}_{2n-1})=\{P\in {\mathcal{L}}(X,{\rm\Pi}_{2n-1}):P|_{{\rm\Pi}_{n}}\equiv \text{id}\}$.
Let ${\it\alpha}\in \mathbb{C}$ in the upper half-plane and let $I$ be an interval. We construct an analogue of Selberg’s majorant of the characteristic function of $I$ that vanishes at the point ${\it\alpha}$. The construction is based on the solution to an extremal problem with positivity and interpolation constraints. Moreover, the passage from the auxiliary extremal problem to the construction of Selberg’s function with vanishing is easily adapted to provide analogous “majorants with vanishing” for any Beurling–Selberg majorant.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H(\mathbb{D})$ denote the space of holomorphic functions on the unit disc $\mathbb{D}$. Given $p>0$ and a weight $\omega $, the Hardy growth space $H(p, \omega )$ consists of those $f\in H(\mathbb{D})$ for which the integral means $M_p(f,r)$ are estimated by $C\omega (r)$, $0<r<1$. Assuming that $p>1$ and $\omega $ satisfies a doubling condition, we characterise $H(p, \omega )$ in terms of associated Fourier blocks. As an application, extending a result by Bennett et al. [‘Coefficients of Bloch and Lipschitz functions’, Illinois J. Math.25 (1981), 520–531], we compute the solid hull of $H(p, \omega )$ for $p\ge 2$.
Suppose that both you and your friend toss an unfair coin n times, for which the probability of heads is equal to α. What is the probability that you obtain at least d more heads than your friend if you make r additional tosses? We obtain asymptotic and monotonicity/convexity properties for this competing probability as a function of n, and demonstrate surprising phase transition phenomenon as the parameters d, r, and α vary. Our main tools are integral representations based on Fourier analysis.
In the so-called Bernoulli model of the kinetic theory of gases, where (1) the particles are dimensionless points, (2) they are contained in a cube container, (3) no attractive or exterior force is acting on them, (4) there is no collision between the particles, (5) the collisions against the walls of the container are according to the law of elastic collision, we deduce from Newtonian mechanics two basic probabilistic limit laws about particle-counting. The first one is a global central limit theorem, and the second one is a local Poisson law. The key fact is that we can prove the “realistic limit”: first the time interval is fixed and the number of particles tends to infinity (where the density particle/volume remains a fixed constant), and then, in the second step, the time tends to infinity.
The completeness of sets of complex exponentials {eiλf(n)⋅:f∈ℤ} in Lp(−π,π), 1<p≤2, is considered under Levinson’s sufficient condition in the non-trivial case λ≥1−(1/p). All such sets are determined explicitly.
In this work, we give some theorems on (mild) weighted pseudo-almost periodic solutions for some abstract semilinear differential equations with uniform continuity. To facilitate this we give a new composition theorem of weighted pseudo-almost periodic functions. Our composition theorem improves the known one by making use of a uniform continuity condition instead of the Lipschitz condition.
Let AN be an N-point set in the unit square and consider the discrepancy function
where x = (x1, x2) ∈ [0,1;]2, and |[0, x)]| denotes the Lebesgue measure of the rectangle. We give various refinements of a well-known result of Schmidt [Irregularities of distribution. VII. Acta Arith. 21 (1972), 45–50] on the L∞ norm of DN. We show that necessarily
The case of α = ∞ is the Theorem of Schmidt. This estimate is sharp. For the digit-scrambled van der Corput sequence, we have
whenever N = 2n for some positive integer n. This estimate depends upon variants of the Chang–Wilson–Wolff inequality [S.-Y. A. Chang, J. M. Wilson and T. H.Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv.60(2) (1985), 217–246]. We also provide similar estimates for the BMO norm of DN.
There are advantages in viewing orthogonal functions as functions generated by a random variable from a basis set of functions. Let Y be a random variable distributed uniformly on [0,1]. We give two ways of generating the Zernike radial polynomials with parameter l, {Zll+2n(x), n≥0}. The first is using the standard basis {xn,n≥0} and the random variable Y1/(l+1). The second is using the nonstandard basis {xl+2n,n≥0} and the random variable Y1/2. Zernike polynomials are important in the removal of lens aberrations, in characterizing video images with a small number of numbers, and in automatic aircraft identification.
Let $p$ be a prime, and let $f:\mathbb{Z}/p\mathbb{Z}\to \mathbb{R}$ be a function with $\mathbb{E}f=0$ and $||\hat{f}|{{|}_{1}}\le 1$. Then ${{\min }_{x\in \mathbb{Z}/p\mathbb{Z}}}|f\left( x \right)|=O{{\left( \log p \right)}^{-1/3+\in }}$. One should think of $f$ as being “approximately continuous”; our result is then an “approximate intermediate value theorem”.
As an immediate consequence we show that if $A\subseteq \mathbb{Z}/p\mathbb{Z}$ is a set of cardinality $\left\lfloor {p}/{2}\; \right\rfloor $, then ${{\sum }_{r}}\widehat{|\,{{1}_{A}}}\left( r \right)|\gg {{\left( \log p \right)}^{1/3-\in }}$. This gives a result on a “$\,\bmod \,p$” analogue of Littlewood's well-known problem concerning the smallest possible ${{L}^{1}}$-norm of the Fourier transform of a set of $n$ integers.
Another application is to answer a question of Gowers. If $A\,\subseteq \,{\mathbb{Z}}/{p\mathbb{Z}}\;$ is a set of size $\left\lfloor {p}/{2}\; \right\rfloor $, then there is some $x\,\in \,\mathbb{Z}/p\mathbb{Z}$ such that
$$||A\cap \left( A+x \right)\,-\,p/4|\,=o\left( p \right).$$
In the dual object of an infinite compact, connected group, every infinite Sidon set contains an infinite subset on which full interpolation can be performed using very small classes of measures (discrete measures on arbitrarily small sets or nonnegative discrete measures). In particular, the Figà-Talamanca–Rider subset of an infinite product of compact, connected, simple Lie groups has these kinds of interpolation. This substantially improves previous interpolation results.
We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.
Let G be a locally compact Hausdorif abelian group and X be a complex Banach space. Let C(G, X) denote the space of all continuous functions f: G → X, with the topology of uniform convergence on compact sets. Let X′ denote the dual of X with the weak* topology. Let Mc(G, X′) denote the space of all X′-valued compactly supported regular measures of finite variation on G. For a function f ∈ C(G, X) and μ ∈ Mc(G, X′), we define the notion of convolution f * μ. A function f ∈ C(G, X) is called mean-periodic if there exists a non-trivial measure μ ∈ Mc(G, X′) such that f * μ = 0. For μ ∈ Mc(G, X′), let M P(μ) = {f ∈ C(G, X): f * μ = 0} and let M P(G, X) = ∪μ M P(μ). In this paper we analyse the following questions: Is M P(G, X) ≠ 0? Is M P(G, X) ≠ C(G, X)? Is M P(G, X) dense in C(G, X)? Is M P(μ) generated by ‘exponential monomials’ in it? We answer these questions for the groups G = ℝ, the real line, and G = T, the circle group. Problems of spectral analysis and spectral synthesis for C(ℝ, X) and C(T, X) are also analysed.
Variograms and covariance functions are key tools in geostatistics. However, various properties, characterizations, and decomposition theorems have been established for covariance functions only. We present analogous results for variograms and explore the connections with covariance functions. Our findings include criteria for covariance functions on intervals, and we apply them to exponential models, fractional Brownian motion, and locally polynomial covariances. In particular, we characterize isotropic locally polynomial covariance functions of degree 3.
In this note we investigate lacunarity or ‘thin’ subsets in the dual object of a compact group via different classes of summing operators between Banach spaces. In particular, we give characterisations of Sidon and ∧ (p) sets, 2 < p < ∞
In this paper we prove that if a weight w satisfies the condition, then the Lp(w) norm of a one-sided singular integral is bounded by the Lp(w) norm of the one-sided Hardy-Littlewood maximal function, for 1 < p < q < ∞.
Martin and Walker ((1997) J. Appl. Prob.34, 657–670) proposed the power-law ρ(v) = c|v|-β, |v| ≥ 1, as a correlation model for stationary time series with long-memory dependence. A straightforward proof of their conjecture on the permissible range of c is given, and various other models for long-range dependence are discussed. In particular, the Cauchy family ρ(v) = (1 + |v/c|α)-β/α allows for the simultaneous fitting of both the long-term and short-term correlation structure within a simple analytical model. The note closes with hints at the fast and exact simulation of fractional Gaussian noise and related processes.
Let ψ be a positive function defined near the origin such lim1 →0+ ψ(t) = 0. We consider the operator Tzƒ, defined as the pricipal value of the convolution of function ƒ and a kernel K(t) = eiy(t)t−z /ψ(t)1−z, where z is a complex number, 0 ≤ Re(z) ≤ 1, 0 < t ≤ 1 and γ is a real function. Assuming certain regularity conditions on ψ and γ and certain relations between ψ and γ we show that Tθ is a bounded operator on Lp (R) for 1/p = (1+ θ) /2 and 0 ≤ θ < 1, and T1 is bounded from H1 (R) to L1 (R).
The inequality of strong summability for the Marcinkiewicz means of multiply Fourier series is proved. The inequalities of strong summability with gaps for the different classes of integrable functions are established. The Bernstein inequality for the fractional derivative of analytic polynomials is proved.