We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we define and study a generalized Drazin inverse xD for ring elements x, and give a characterization of elements a, b for which aaD = bbD. We apply our results to the study of EP elements in a ring with involution.
We study the perturbation of the generalized Drazin inverse for the elements of Banach algebras and bounded linear operators on Banach space. This work, among other things, extends the results obtained by the second author and Guorong Wang on the Drazin inverse for matrices.
In this paper we prove that every positive definite n-ary integral quadratic form with 12 < n < 13 (respectively 14 ≦ n ≤ 20) that can be represented by a sum of squares of integral linear forms is represented by a sum of 2 · 3n + n + 6 (respectively 3 · 4n + n + 3) squares. We also prove that every positive definite 7-ary integral quadratic form that can be represented by a sum of squares is represented by a sum of 25 squares.
This article describes new estimates for the second largest eigenvalue in absolute value of reversible and ergodic Markov chains on finite state spaces. These estimates apply when the stationary distribution assigns a probability higher than 0.702 to some given state of the chain. Geometric tools are used. The bounds mainly involve the isoperimetric constant of the chain, and hence generalize famous results obtained for the second eigenvalue. Comparison estimates are also established, using the isoperimetric constant of a reference chain. These results apply to the Metropolis-Hastings algorithm in order to solve minimization problems, when the probability of obtaining the solution from the algorithm can be chosen beforehand. For these dynamics, robust bounds are obtained at moderate levels of concentration.
Consider the random walk {Sn} whose summands have the distribution P(X=0) = 1-(2/π), and P(X = ± n) = 2/[π(4n2−1)], for n ≥ 1. This random walk arises when a simple random walk in the integer plane is observed only at those instants at which the two coordinates are equal. We derive the fundamental matrix, or Green function, for the process on the integral [0,N] = {0,1,…,N}, and from this, an explicit formula for the mean time xk for the random walk starting from S0 = k to exit the interval. The explicit formula yields the limiting behavior of xk as N → ∞ with k fixed. For the random walk starting from zero, the probability of exiting the interval on the right is obtained. By letting N → ∞ in the fundamental matrix, the Green function on the interval [0,∞) is found, and a simple and explicit formula for the probability distribution of the point of entry into the interval (−∞,0) for the random walk starting from k = 0 results. The distributions for some related random variables are also discovered.
Applications to stress concentration calculations in discrete lattices are briefly reviewed.
Let A ∈ ℒ(Cn) and A1, A2 be the unique Hermitian operators such that A = A1 + i A2. The paper is concerned with the differential structure of the numerical range map nA: x ↦ ((A1x, x), (A1x, x)) and its connection with certain natural subsets of the numerical range W(A) of A. We completely characterize the various sets of critical and regular points of the map nA as well as their respective images within W(A). In particular, we show that the plane algebraic curves introduced by R. Kippenhahn appear naturally in this context. They basically coincide with the image of the critical points of nA.
The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space, partitioned into two classes termed ‘open’ and ‘closed’. It is possible to observe only which class the process is in. A burst of channel openings is defined to be a succession of open sojourns separated by closed sojourns all having duration less than t0. Let N(t) be the number of bursts commencing in (0, t]. Then
are measures of the degree of temporal clustering of bursts. We develop two methods for determining the above measures. The first method uses an embedded Markov renewal process and remains valid when the underlying channel process is semi-Markov and/or brief sojourns in either the open or closed classes of state are undetected. The second method uses a ‘backward’ differential-difference equation.
The observed channel process when brief sojourns are undetected can be modelled by an embedded Markov renewal process, whose kernel is shown, by exploiting connections with bursts when all sojourns are detected, to satisfy a differential-difference equation. This permits a unified derivation of both exact and approximate expressions for the kernel, and leads to a thorough asymptotic analysis of the kernel as the length of undetected sojourns tends to zero.
The purpose of this paper is to provide explicit formulas for a variety of probabilistic quantities associated with an asymmetric random walk on a finite rectangular lattice with absorbing barriers. Quantities of interest include probabilities that a walker will exit the lattice onto some particular set of boundary states, the expected duration of the walk, and the expected number of visits to one state given a start in another. These quantities are shown to satisfy two-dimensional recurrence relations that are very similar in structure. In each case, the recurrence relations may be represented by matrix equations of the form X = AX + XB + C, where A and B are tridiagonal Toeplitz matrices. The spectral properties of A and B are investigated and used to provide solutions to this matrix equation. The solutions to the matrix equations then lead to solutions for the recurrence relations in very general cases.
Let R be an artinian ring. A family, ℳ, of isomorphism types of R-modules of finite length is said to be canonical if every R-module of finite length is a direct sum of modules whose isomorphism types are in ℳ. In this paper we show that ℳ is canonical if the following conditions are simultaneously satisfied: (a) ℳ contains the isomorphism type of every simple R-module; (b) ℳ has a preorder with the property that every nonempty subfamily of ℳ with a common bound on the lengths of its members has a smallest type; (c) if M is a nonsplit extension of a module of isomorphism type II1 by a module of isomorphism type II2, with II1, II2 in ℳ, then M contains a submodule whose type II3 is in ℳ and II1 does not precede II3. We use this result to give another proof of Kronecker's theorem on canonical pairs of matrices under equivalence. If R is a tame hereditary finite-dimensional algebra we show that there is a preorder on the family of isomorphism types of indecomposable R-modules of finite length that satisfies Conditions (b) and (c).
We consider a continuous-time Markov chain in which one cannot observe individual states but only which of two sets of states is occupied at any time. Furthermore, we suppose that the resolution of the recording apparatus is such that small sojourns, of duration less than a constant deadtime, cannot be observed. We obtain some results concerning the poles of the Laplace transform of the probability density function of apparent occupancy times, which correspond to a problem about generalised eigenvalues and eigenvectors. These results provide useful asymptotic approximations to the probability density of occupancy times. A numerical example modelling a calcium-activated potassium channel is given. Some generalisations to the case of random deadtimes complete the paper.
This note gives a new strong stationary time (SST) for reversible finite Markov chains. A modification of the initial distribution is represented as a mixture of distributions which have eigenvector interpretations, and for which good simple SSTs exist. This provides some insight into the relationship between SSTs and eigenvalues. Connections to duality and the threshold phenomenon are discussed.
The surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.
Every invertible n-by-n matrix over a ring R satisfying the first Bass stable range condition is the product of n simple automorphisms, and there are invertible matrices which cannot be written as the products of a smaller number of simple automorphisms. This generalizes results of Ellers on division rings and local rings.
Let R be a not necessarily commutative local ring, M a free R-module, and π ∈ GL(M) such that B(π) = im(π –1)is a subspace of M. Then π = σ1…σtρ, where σi are simple mappings of given types, ρ is a simple mapping, B(sgr;i) and B(ρ) are subspaces and t ≤ dim B(π).
The classification of spaces of matrices of bounded rank is known to depend upon ‘primitive’ spaces, whose structure is considerably restricted. A characterisation of an infinite class of primitive spaces is given. The result is then applied to obtain a complete description of spaces whose matrices have rank at most 3.
The representation theory of Clifford algebras has been used to obtain information on the possible orders of amicable pairs of orthogonal designs on given numbers of variables. If, however, the same approach is tried on more complex systems of orthogonal designs, such as product designs and amicable triples, algebras which properly generalize the Clifford algebras are encountered. In this paper a theory of such generalizations is developed and applied to the theory of systems of orthogonal designs, and in particular to the theory of product designs.
A weak canonical form is derived for vector spaces of m × n matrices all of rank at most r. This shows that the structure of such spaces is controlled by the structure of an associated ‘primitive’ space. In the case of primitive spaces it is shown that m and n are bounded by functions of r and that these bounds are tight.
If G, H and B are groups such that G × B ≃ H × B, G/[G, G]. Z(G) is free abelian and B is finitely generated abelian, then G ≃ H. The equivalence classes of triples (Vξ,A) where Vand A are finitely generated free abelian groups and ξ: V⊗ V → A is a bilinear form constitute a semigroup B undera natural external orthogonal sum. This semigroup B is cancellative. A cancellation theorem for class 2 nilpotent groups is deduced.
R. Paré and W. Schelter (1978) have extended the Cayley-Hamilton theorem by showing that for each n<1 there is an integer k such that all n x n matrices over any (possibly noncommutative) ring satisfy a monic polynomial of degree k. We give a lower bound for this degree, namely π(n), which is defined as the shortest possible length of a sequence with entries from {1, 2, …, n}.