We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that every endomorphism of an infinite-dimensional vector space over a field splits into the sum of four idempotents and into the sum of four square-zero endomorphisms, a result that is optimal in general.
New inequalities relating the norm $n(X)$ and the numerical radius $w(X)$ of invertible bounded linear Hilbert space operators were announced by Hosseini and Omidvar [‘Some inequalities for the numerical radius for Hilbert space operators’, Bull. Aust. Math. Soc.94 (2016), 489–496]. For example, they asserted that $w(AB)\leq$$2w(A)w(B)$ for invertible bounded linear Hilbert space operators $A$ and $B$. We identify implicit hypotheses used in their discovery. The inequalities and their proofs can be made good by adding the extra hypotheses which take the form $n(X^{-1})=n(X)^{-1}$. We give counterexamples in the absence of such additional hypotheses. Finally, we show that these hypotheses yield even stronger conclusions, for example, $w(AB)=w(A)w(B)$.
This paper proves the existence of potentials of the first and second kind of a Frobenius like structure in a frame, which encompasses families of arrangements. The frame uses the notion of matroids. For the proof of the existence of the potentials, a power series ansatz is made. The proof that it works requires that certain decompositions of tuples of coordinate vector fields are related by certain elementary transformations. This is shown with a nontrivial result on matroid partition.
Finding the intersection of $n$-dimensional spheres in $\mathbb{R}^{n}$ is an interesting problem with applications in trilateration, global positioning systems, multidimensional scaling and distance geometry. In this paper, we generalize some known results on finding the intersection of spheres, based on QR decomposition. Our main result describes the intersection of any number of $n$-dimensional spheres without the assumption that the centres of the spheres are affinely independent. A possible application in the interval distance geometry problem is also briefly discussed.
For every rotation $\unicode[STIX]{x1D70C}$ of the Euclidean space $\mathbb{R}^{n}$ ($n\geq 3$), we find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ is a product of $r$ rotations by an angle $\unicode[STIX]{x1D6FC}$ ($0<\unicode[STIX]{x1D6FC}\leq \unicode[STIX]{x1D70B}$). We also find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ can be written as a product of $r$ full rotations by an angle $\unicode[STIX]{x1D6FC}$.
We propose a robust numerical algorithm for solving the nonlinear eigenvalue problem A(ƛ)x = 0. Our algorithm is based on the idea of finding the value of ƛ for which A(ƛ) is singular by computing the smallest eigenvalue or singular value of A(ƛ) viewed as a constant matrix. To further enhance computational efficiency, we introduce and use the concept of signed singular value. Our method is applicable when A(ƛ) is large and nonsymmetric and has strong nonlinearity. Numerical experiments on a nonlinear eigenvalue problem arising in the computation of scaling exponent in turbulent flow show robustness and effectiveness of our method.
The Toda equation and its variants are studied in the filed of integrable systems. One particularly generalized time discretisation of the Toda equation is known as the discrete hungry Toda (dhToda) equation, which has two main variants referred to as the dhTodaI equation and dhTodaII equation. The dhToda equations have both been shown to be applicable to the computation of eigenvalues of totally nonnegative (TN) matrices, which are matrices without negative minors. The dhTodaI equation has been investigated with respect to the properties of integrable systems, but the dhTodaII equation has not. Explicit solutions using determinants and matrix representations called Lax pairs are often considered as symbolic properties of discrete integrable systems. In this paper, we clarify the determinant solution and Lax pair of the dhTodaII equation by focusing on an infinite sequence. We show that the resulting determinant solution firmly covers the general solution to the dhTodaII equation, and provide an asymptotic analysis of the general solution as discrete-time variable goes to infinity.
We discuss an efficient preconditioner and iterative numerical method to solve large complex linear algebraic systems of the form (W + iT)u = c, where W and T are symmetric matrices, and at least one of them is nonsingular. When the real part W is dominantly stronger or weaker than the imaginary part T, we propose a block multiplicative (BM) preconditioner or its variant (VBM), respectively. The BM and VBM preconditioned iteration methods are shown to be parameter-free, in terms of eigenvalue distributions of the preconditioned matrix. Furthermore, when the relationship between W and T is obscure, we propose a new preconditioned BM method (PBM) to overcome this difficulty. Both convergent properties of these new iteration methods and spectral properties of the corresponding preconditioned matrices are discussed. The optimal value of iteration parameter for the PBM method is determined. Numerical experiments involving the Helmholtz equation and some other applications show the effectiveness and robustness of the proposed preconditioners and corresponding iterative methods.
Hexagonal grids are valuable in two-dimensional applications involving Laplacian. The methods and analysis are investigated in current work in both linear and nonlinear problems related to anisotropic Laplacian. Ordinary and compact hexagonal grid finite difference methods are developed by elementary arguments, and then analyzed by perturbation for standard Laplacian. In the anisotropic case, analysis is done through reduction to the standard one by using Fourier vectors of mixed types. These hexagonal seven-point methods, with established theoretic stabilities and accuracies, are numerically confirmed in linear and semi-linear anisotropic Poisson problems, and can be applied also in time-dependent problems and in many applications in two-dimensional irregular domains.
In this paper we generalize the notion of the C-numerical range of a matrix to operators in arbitrary tracial von Neumann algebras. For each self-adjoint operator C, the C-numerical range of such an operator is defined; it is a compact, convex subset of ℂ. We explicitly describe the C-numerical ranges of several operators and classes of operators.
The distribution for eigenvalues of Schur complement of matrices plays an important role in many mathematical problems. In this paper, we firstly present some criteria for H-matrix. Then as application, for two class matrices whose submatrices are γ-diagonally dominant and product γ-diagonally dominant, we show that the eigenvalues of the Schur complement are located in the Geršgorin discs and the Ostrowski discs of the original matrices under certain conditions.
In this paper, we consider two innovative structured matrices, CUPL-Toeplitz matrix and CUPL-Hankel matrix. The inverses of CUPL-Toeplitz and CUPL-Hankel matrices can be expressed by the Gohberg-Heinig type formulas, and the stability of the inverse matrices is verified in terms of 1-, ∞- and 2-norms, respectively. In addition, two algorithms for the inverses of CUPL-Toeplitz and CUPL-Hankel matrices are given and examples are provided to verify the feasibility of these algorithms.
There has been a lot of study on the SOR-like methods for solving the augmented system of linear equations since the outstanding work of Golub, Wu and Yuan (BIT 41(2001)71-85) was presented fifteen years ago. Based on the SOR-like methods, we establish a class of accelerated SOR-like methods for large sparse augmented linear systems by making use of optimization technique, which will find the optimal relaxation parameter ω by optimization models. We demonstrate the convergence theory of the new methods under suitable restrictions. The numerical examples show these methods are effective.
For symmetric eigenvalue problems, we constructed a three-term recurrence polynomial filter by means of Chebyshev polynomials. The new filtering technique does not need to solve linear systems and only needs matrix-vector products. It is a memory conserving filtering technique for its three-term recurrence relation. As an application, we use this filtering strategy to the Davidson method and propose the filtered-Davidson method. Through choosing suitable shifts, this method can gain cubic convergence rate locally. Theory and numerical experiments show the efficiency of the new filtering technique.
In this paper, we analyse the convergence rates of several different predictor-corrector iterations for computing the minimal positive solution of the nonsymmetric algebraic Riccati equation arising in transport theory. We have shown theoretically that the new predictor-corrector iteration given in [Numer. Linear Algebra Appl., 21 (2014), pp. 761–780] will converge no faster than the simple predictor-corrector iteration and the nonlinear block Jacobi predictor-corrector iteration. Moreover the last two have the same asymptotic convergence rate with the nonlinear block Gauss-Seidel iteration given in [SIAM J. Sci. Comput., 30 (2008), pp. 804–818]. Preliminary numerical experiments have been reported for the validation of the developed comparison theory.
We propose and investigate a novel solution strategy to efficiently and accurately compute approximate solutions to semilinear optimal control problems, focusing on the optimal control of phase field formulations of geometric evolution laws. The optimal control of geometric evolution laws arises in a number of applications in fields including material science, image processing, tumour growth and cell motility. Despite this, many open problems remain in the analysis and approximation of such problems. In the current work we focus on a phase field formulation of the optimal control problem, hence exploiting the well developed mathematical theory for the optimal control of semilinear parabolic partial differential equations. Approximation of the resulting optimal control problemis computationally challenging, requiring massive amounts of computational time and memory storage. The main focus of this work is to propose, derive, implement and test an efficient solution method for such problems. The solver for the discretised partial differential equations is based upon a geometric multigrid method incorporating advanced techniques to deal with the nonlinearities in the problem and utilising adaptive mesh refinement. An in-house two-grid solution strategy for the forward and adjoint problems, that significantly reduces memory requirements and CPU time, is proposed and investigated computationally. Furthermore, parallelisation as well as an adaptive-step gradient update for the control are employed to further improve efficiency. Along with a detailed description of our proposed solution method together with its implementation we present a number of computational results that demonstrate and evaluate our algorithms with respect to accuracy and efficiency. A highlight of the present work is simulation results on the optimal control of phase field formulations of geometric evolution laws in 3-D which would be computationally infeasible without the solution strategies proposed in the present work.
In this paper we establish operator quasilinearity properties of some functionals associated with Davis–Choi–Jensen’s inequality for positive maps and operator convex or concave functions. Applications for the power function and the logarithm are provided.
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.
Assume that $A$ is a finite-dimensional algebra over some field, and assume that $A$ is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module $M$ whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.