We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper investigates structural changes in the parameters of first-order autoregressive (AR) models by analyzing the edge eigenvalues of the precision matrices. Specifically, edge eigenvalues in the precision matrix are observed if and only if there is a structural change in the AR coefficients. We show that these edge eigenvalues correspond to the zeros of a determinantal equation. Additionally, we propose a consistent estimator for detecting outliers within the panel time series framework, supported by numerical experiments.
An element of a group is called strongly reversible or strongly real if it can be expressed as a product of two involutions. We provide necessary and sufficient conditions for an element of $\mathrm{SL}(n,\mathbb{C})$ to be a product of two involutions. In particular, we classify the strongly reversible conjugacy classes in $\mathrm{SL}(n,\mathbb{C})$.
We prove that the infinite half-spin representations are topologically Noetherian with respect to the infinite spin group. As a consequence, we obtain that half-spin varieties, which we introduce, are defined by the pullback of equations at a finite level. The main example for such varieties is the infinite isotropic Grassmannian in its spinor embedding, for which we explicitly determine its defining equations.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
Isoclinic subspaces have been studied for over a century. Quantum error correcting codes were recently shown to define a subclass of families of isoclinic subspaces. The Knill–Laflamme theorem is a seminal result in the theory of quantum error correction, a central topic in quantum information. We show there is a generalized version of the Knill–Laflamme result and conditions that applies to all families of isoclinic subspaces. In the case of quantum stabilizer codes, the expanded conditions are shown to capture logical operators. We apply the general conditions to give a new perspective on a classical subclass of isoclinic subspaces defined by the graphs of anti-commuting unitary operators. We show how the result applies to recently studied mutually unbiased quantum measurements (MUMs), and we give a new construction of such measurements motivated by the approach.
For a continuous-time phase-type (PH) distribution, starting with its Laplace–Stieltjes transform, we obtain a necessary and sufficient condition for its minimal PH representation to have the same order as its algebraic degree. To facilitate finding this minimal representation, we transform this condition equivalently into a non-convex optimization problem, which can be effectively addressed using an alternating minimization algorithm. The algorithm convergence is also proved. Moreover, the method we develop for the continuous-time PH distributions can be used directly for the discrete-time PH distributions after establishing an equivalence between the minimal representation problems for continuous-time and discrete-time PH distributions.
We investigate when the algebraic numerical range is a C-spectral set in a Banach algebra. While providing several counterexamples based on classical ideas as well as combinatorial Banach spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case of complex $2\times 2$-matrices with the induced $1$-norm. Furthermore, we discuss positive results for infinite-dimensional Banach algebras, including the Calkin algebra.
Let Γ be a finite graph and let $A(\Gamma)$ be the corresponding right-angled Artin group. From an arbitrary basis $\mathcal B$ of $H^1(A(\Gamma),\mathbb F)$ over an arbitrary field, we construct a natural graph $\Gamma_{\mathcal B}$ from the cup product, called the cohomology basis graph. We show that $\Gamma_{\mathcal B}$ always contains Γ as a subgraph. This provides an effective way to reconstruct the defining graph Γ from the cohomology of $A(\Gamma)$, to characterize the planarity of the defining graph from the algebra of $A(\Gamma)$ and to recover many other natural graph-theoretic invariants. We also investigate the behaviour of the cohomology basis graph under passage to elementary subminors and show that it is not well-behaved under edge contraction.
Let R be a ring and let $n\ge 2$. We discuss the question of whether every element in the matrix ring $M_n(R)$ is a product of (additive) commutators $[x,y]=xy-yx$, for $x,y\in M_n(R)$. An example showing that this does not always hold, even when R is commutative, is provided. If, however, R has Bass stable rank one, then under various additional conditions every element in $M_n(R)$ is a product of three commutators. Further, if R is a division ring with infinite center, then every element in $M_n(R)$ is a product of two commutators. If R is a field and $a\in M_n(R)$, then every element in $M_n(R)$ is a sum of elements of the form $[a,x][a,y]$ with $x,y\in M_n(R)$ if and only if the degree of the minimal polynomial of a is greater than $2$.
An element of a group is called reversible if it is conjugate to its own inverse. Reversible elements are closely related to strongly reversible elements, which can be expressed as a product of two involutions. In this paper, we classify the reversible and strongly reversible elements in the quaternionic special linear group $ \mathrm {SL}(n,\mathbb {H})$ and quaternionic projective linear group $ \mathrm {PSL}(n,\mathbb {H})$. We prove that an element of $ \mathrm {SL}(n,\mathbb {H})$ (resp. $ \mathrm {PSL}(n,\mathbb {H})$) is reversible if and only if it is a product of two skew-involutions (resp. involutions).
The embedding problem of Markov chains examines whether a stochastic matrix$\mathbf{P} $ can arise as the transition matrix from time 0 to time 1 of a continuous-time Markov chain. When the chain is homogeneous, it checks if $ \mathbf{P}=\exp{\mathbf{Q}}$ for a rate matrix $ \mathbf{Q}$ with zero row sums and non-negative off-diagonal elements, called a Markov generator. It is known that a Markov generator may not always exist or be unique. This paper addresses finding $ \mathbf{Q}$, assuming that the process has at most one jump per unit time interval, and focuses on the problem of aligning the conditional one-jump transition matrix from time 0 to time 1 with $ \mathbf{P}$. We derive a formula for this matrix in terms of $ \mathbf{Q}$ and establish that for any $ \mathbf{P}$ with non-zero diagonal entries, a unique $ \mathbf{Q}$, called the ${\unicode{x1D7D9}}$-generator, exists. We compare the ${\unicode{x1D7D9}}$-generator with the one-jump rate matrix from Jarrow, Lando, and Turnbull (1997), showing which is a better approximate Markov generator of $ \mathbf{P}$ in some practical cases.
For a partially specified stochastic matrix, we consider the problem of completing it so as to minimize Kemeny’s constant. We prove that for any partially specified stochastic matrix for which the problem is well defined, there is a minimizing completion that is as sparse as possible. We also find the minimum value of Kemeny’s constant in two special cases: when the diagonal has been specified and when all specified entries lie in a common row.
Let A be an F-central simple algebra of degree $m^2=\prod _{i=1}^k p_i^{2\alpha _i}$ and G be a subgroup of the unit group of A such that $F[G]=A$. We prove that if G is a central product of two of its subgroups M and N, then $F[M]\otimes _F F[N]\cong F[G]$. Also, if G is locally nilpotent, then G is a central product of subgroups $H_i$, where $[F[H_i]:F]=p_i^{2\alpha _i}$, $A=F[G]\cong F[H_1]\otimes _F \cdots \otimes _F F[H_k]$ and $H_i/Z(G)$ is the Sylow $p_i$-subgroup of $G/Z(G)$ for each i with $1\leq i\leq k$. Additionally, there is an element of order $p_i$ in F for each i with $1\leq i\leq k$.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two location-amplitude identities that characterize the relationships between locations and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of a specific $l_{0}$ minimization algorithm in the super-resolution problem.
The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-dimensional spaces. The resolution limit is expressed as
$$\begin{align*}\mathscr R = \frac{4\arcsin \left(\left(\frac{\sigma}{m_{\min}}\right)^{\frac{1}{2}} \right)}{\Omega} \end{align*}$$
for ${\frac {\sigma }{m_{\min }}}{\leqslant }{\frac {1}{2}}$, where ${\frac {\sigma }{m_{\min }}}$ represents the inverse of the signal-to-noise ratio (${\mathrm {SNR}}$) and $\Omega $ is the cutoff frequency. It also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit ${\frac {\pi }{\Omega }}$ when the signal-to-noise ratio (SNR) exceeds $2$. Moreover, we find a tractable algorithm that achieves the resolution ${\mathscr {R}}$ when distinguishing two sources.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$-th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$, and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$.
We determine the characteristic polynomials of the matrices $[q^{\,j-k}+t]_{1\le \,j,k\le n}$ and $[q^{\,j+k}+t]_{1\le \,j,k\le n}$ for any complex number $q\not =0,1$. As an application, for complex numbers $a,b,c$ with $b\not =0$ and $a^2\not =4b$, and the sequence $(w_m)_{m\in \mathbb Z}$ with $w_{m+1}=aw_m-bw_{m-1}$ for all $m\in \mathbb Z$, we determine the exact value of $\det [w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$.
We show that properties of pairs of finite, positive, and regular Borel measures on the complex unit circle such as domination, absolute continuity, and singularity can be completely described in terms of containment and intersection of their reproducing kernel Hilbert spaces of “Cauchy transforms” in the complex unit disk. This leads to a new construction of the classical Lebesgue decomposition and proof of the Radon–Nikodym theorem using reproducing kernel theory and functional analysis.
We solve the problem of finding the inverse connection formulae for the generalised Bessel polynomials and their reciprocals, the reverse generalised Bessel polynomials. The connection formulae express monomials in terms of the generalised Bessel polynomials. They enable formulae for the elements of change of basis matrices for both kinds of generalised Bessel polynomials to be derived and proved correct directly.