We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.
The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.
We give a generators-and-relations description of differential graded algebras recently introduced by Ozsváth and Szabó for the computation of knot Floer homology. We also compute the homology of these algebras and determine when they are formal.
A meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced back to H. Poincaré and naturally appear in various areas of mathematics, theoretical physics and computational biology (in particular, they provide a model of polymer folding). Enumeration of meanders is an important open problem. The number of meanders with $2N$ crossings grows exponentially when $N$ grows, but the long-standing problem on the precise asymptotics is still out of reach.
We show that the situation becomes more tractable if one additionally fixes the topological type (or the total number of minimal arcs) of a meander. Then we are able to derive simple asymptotic formulas for the numbers of meanders as $N$ tends to infinity. We also compute the asymptotic probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc systems (one on each of the two hemispheres) along the common equator.
The new tools we bring to bear are based on interpretation of meanders as square-tiled surfaces with one horizontal and one vertical cylinder. The proofs combine recent results on Masur–Veech volumes of moduli spaces of meromorphic quadratic differentials in genus zero with our new observation that horizontal and vertical separatrix diagrams of integer quadratic differentials are asymptotically uncorrelated. The additional combinatorial constraints we impose in this article yield explicit polynomial asymptotics.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
If $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ is a covering map between connected graphs, and $H$ is the subgroup of $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$ used to construct the cover, then it is well known that the group of deck transformations of the cover is isomorphic to $N(H)/H$, where $N(H)$ is the normalizer of $H$ in $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$. We show that an entirely analogous result holds for immersions between connected graphs, where the subgroup $H$ is replaced by the closed inverse submonoid of the inverse monoid $L(\unicode[STIX]{x1D6E4},v)$ used to construct the immersion. We observe a relationship between group actions on graphs and deck transformations of graph immersions. We also show that a graph immersion $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ may be extended to a cover $g:\tilde{\unicode[STIX]{x1D6E5}}\rightarrow \unicode[STIX]{x1D6E4}$ in such a way that all deck transformations of $f$ are restrictions of deck transformations of $g$.
For p ≥ 1, one can define a generalisation of the unknotting number tup called the pth untwisting number, which counts the number of null-homologous twists on at most 2p strands required to convert the knot to the unknot. We show that for any p ≥ 2 the difference between the consecutive untwisting numbers tup–1 and tup can be arbitrarily large. We also show that torus knots exhibit arbitrarily large gaps between tu1 and tu2.
In this paper, we study the chord index of virtual knots, which can be thought of as an extension of the chord parity. We show how to use the chord index to enhance the quandle coloring invariants. The notion of indexed quandle is introduced, which generalizes the quandle idea. Some applications of this new invariant is discussed. We also study how to define a generalized chord index via a fixed finite biquandle. Finally, the chord index and its applications in twisted knot theory are discussed.
If $Y$ is a closed orientable graph manifold, we show that $Y$ admits a coorientable taut foliation if and only if $Y$ is not an L-space. Combined with previous work of Boyer and Clay, this implies that $Y$ is an L-space if and only if $\unicode[STIX]{x1D70B}_{1}(Y)$ is not left-orderable.
Leighton’s graph covering theorem states that a pair of finite graphs with isomorphic universal covers have a common finite cover. We provide a new proof of Leighton’s theorem that allows generalisations; we prove the corresponding result for graphs with fins. As a corollary we obtain pattern rigidity for free groups with line patterns, building on the work of Cashen–Macura and Hagen–Touikan. To illustrate the potential for future applications, we give a quasi-isometric rigidity result for a family of cyclic doubles of free groups.
Any knot in $S^{3}$ can be reduced to a slice knot by crossing changes. Indeed, this slice knot can be taken to be the unknot. In this paper we study the question of when the same holds for knots in homology spheres. We show that a knot in a homology sphere is nullhomotopic in a smooth homology ball if and only if that knot is smoothly concordant to a knot that is homotopic to a smoothly slice knot. As a consequence, we prove that the equivalence relation on knots in homology spheres given by cobounding immersed annuli in a homology cobordism is generated by concordance in homology cobordisms together with homotopy in a homology sphere.
We compute the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer homology of Seifert rational homology three-spheres in terms of their Heegaard Floer homology. As a result of this computation, we prove Manolescu’s conjecture that $\unicode[STIX]{x1D6FD}=-\bar{\unicode[STIX]{x1D707}}$ for Seifert integral homology three-spheres. We show that the Manolescu invariants $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$ give new obstructions to homology cobordisms between Seifert fiber spaces, and that many Seifert homology spheres $\unicode[STIX]{x1D6F4}(a_{1},\ldots ,a_{n})$ are not homology cobordant to any $-\unicode[STIX]{x1D6F4}(b_{1},\ldots ,b_{n})$. We then use the same invariants to give an example of an integral homology sphere not homology cobordant to any Seifert fiber space. We also show that the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer spectrum provides homology cobordism obstructions distinct from $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$. In particular, we identify an $\mathbb{F}[U]$-module called connected Seiberg–Witten Floer homology, whose isomorphism class is a homology cobordism invariant.
We show that if a link $L$ has a closed $n$-braid representative admitting a nondegenerate exchange move, an exchange move that does not obviously preserve the conjugacy class, $L$ has infinitely many nonconjugate closed $n$-braid representatives.
Let $\mathcal{M}$ denote the mapping class group of Σ, a compact connected oriented surface with one boundary component. The action of $\mathcal{M}$ on the nilpotent quotients of π1(Σ) allows to define the so-called Johnson filtration and the Johnson homomorphisms. J. Levine introduced a new filtration of $\mathcal{M}$, called the Lagrangian filtration. He also introduced a version of the Johnson homomorphisms for this new filtration. The first term of the Lagrangian filtration is the Lagrangian mapping class group, whose definition involves a handlebody bounded by Σ, and which contains the Torelli group. These constructions extend in a natural way to the monoid of homology cobordisms. Besides, D. Cheptea, K. Habiro and G. Massuyeau constructed a functorial extension of the LMO invariant, called the LMO functor, which takes values in a category of diagrams. In this paper we give a topological interpretation of the upper part of the tree reduction of the LMO functor in terms of the homomorphisms defined by J. Levine for the Lagrangian mapping class group. We also compare the Johnson filtration with the filtration introduced by J. Levine.
The simplicial complexity is an invariant for finitely presentable groups which was recently introduced by Babenko, Balacheff, and Bulteau to study systolic area. The simplicial complexity κ(G) was proved to be a good approximation of the systolic area σ(G) for large values of κ(G). In this paper we compute the simplicial complexity of all surface groups (both in the orientable and in the non-orientable case). This partially settles a problem raised by Babenko, Balacheff, and Bulteau. We also prove that κ(G * ℤ) = κ(G) for any surface group G. This provides the first partial evidence in favor of the conjecture of the stability of the simplicial complexity under free product with free groups. The general stability problem, both for simplicial complexity and for systolic area, remains open.
We show that the isomorphism problems for left distributive algebras, racks, quandles and kei are as complex as possible in the sense of Borel reducibility. These algebraic structures are important for their connections with the theory of knots, links and braids. In particular, Joyce showed that a quandle can be associated with any knot, and this serves as a complete invariant for tame knots. However, such a classification of tame knots heuristically seemed to be unsatisfactory, due to the apparent difficulty of the quandle isomorphism problem. Our result confirms this view, showing that, from a set-theoretic perspective, classifying tame knots by quandles replaces one problem with (a special case of) a much harder problem.
We construct links of arbitrarily many components each component of which is slice and yet are not concordant to any link with even one unknotted component. The only tool we use comes from the Alexander modules.
We introduce a refined version of group cohomology and relate it to the space of polynomials on the group in question. We show that the polynomial cohomology with trivial coefficients admits a description in terms of ordinary cohomology with polynomial coefficients, and that the degree one polynomial cohomology with trivial coefficients admits a description directly in terms of polynomials. Lastly, we give a complete description of the polynomials on a connected, simply connected nilpotent Lie group by showing that these are exactly the maps that pull back to classical polynomials via the exponential map.
We construct prime amphicheiral knots that have free period 2. This settles an open question raised by the second-named author, who proved that amphicheiral hyperbolic knots cannot admit free periods and that prime amphicheiral knots cannot admit free periods of order > 2.