To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we obtain a new result for overtwisted contact $(+1/n)$-surgery. We also give a counterexample to a conjecture by James Conway on overtwistedness of manifolds obtained by contact surgery.
In this paper we use tools from differential topology to give a geometric description of cohomology for Hilbert manifolds. Our model is Quillen’s geometric description of cobordism groups for finite-dimensional smooth manifolds [Quillen, ‘Elementary proofs of some results of cobordism theory using steenrod operations’, Adv. Math., 7 (1971)]. Quillen stresses the fact that this construction allows the definition of Gysin maps for ‘oriented’ proper maps. For finite-dimensional manifolds one has a Gysin map in singular cohomology which is based on Poincaré duality, hence it is not clear how to extend it to infinite-dimensional manifolds. But perhaps one can overcome this difficulty by giving a Quillen type description of singular cohomology for Hilbert manifolds. This is what we do in this paper. Besides constructing a general Gysin map, one of our motivations was a geometric construction of equivariant cohomology, which even for a point is the cohomology of the infinite-dimensional space $BG$, which has a Hilbert manifold model. Besides that, we demonstrate the use of such a geometric description of cohomology by several other applications. We give a quick description of characteristic classes of a finite-dimensional vector bundle and apply it to a generalized Steenrod representation problem for Hilbert manifolds and define a notion of a degree of proper oriented Fredholm maps of index $0$.
We discuss the cobordism type of spin manifolds with non-negative sectional curvature. We show that in each dimension 4k ⩾ 12, there are infinitely many cobordism types of simply connected and non-negatively curved spin manifolds. Moreover, we raise and analyse a question about possible cobordism obstructions to non-negative curvature.
Let $n>3$, and let $L$ be a Lagrangian embedding of $\mathbb{R}^{n}$ into the cotangent bundle $T^{\ast }\mathbb{R}^{n}$ of $\mathbb{R}^{n}$ that agrees with the cotangent fiber $T_{x}^{\ast }\mathbb{R}^{n}$ over a point $x\neq 0$ outside a compact set. Assume that $L$ is disjoint from the cotangent fiber at the origin. The projection of $L$ to the base extends to a map of the $n$-sphere $S^{n}$ into $\mathbb{R}^{n}\setminus \{0\}$. We show that this map is homotopically trivial, answering a question of Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in $T^{\ast }\mathbb{R}^{n}$, under suitable dimension and Maslov index hypotheses. The proofs combine techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with symplectic field theory.
We work in the smooth category. The following problem was suggested by E. Rees in 2002: describe the precomposition action of self-diffeomorphisms of Sp × Sq on the set of isotopy classes of embeddings Sp × Sq → ℝm.
Let G: Sp × Sq → ℝm be an embedding such that
is null-homotopic for some pair of different points a, b ∈ Sp. We prove the following statement: if ψ is an autodiffeomorphism of Sp × Sq identical on a neighbourhood of a × Sq for some a ∈ Sp and p ⩽ q and 2m ⩾ 3p +3q + 4, then G◦ ψ is isotopic to G.
Let N be an oriented (p + q)-manifold and let f, g be isotopy classes of embeddings N → ℝm, Sp × Sq → ℝm, respectively. As a corollary we obtain that under certain conditions for orientation-preserving embeddings s: Sp × Dq → N the Sp-parametric embedded connected sum f#sg depends only on f, g and the homology class of s|Sp × 0.
We use elementary skein theory to prove a version of a result of Stylianakis (Stylianakis, The normal closure of a power of a half-twist has infinite index in the mapping class group of a punctured sphere, arXiv:1511.02912) who showed that under mild restrictions on m and n, the normal closure of the mth power of a half-twist has infinite index in the mapping class group of a sphere with 2n punctures.
Every cohomology ring isomorphism between two non-singular complete toric varieties (respectively, two quasitoric manifolds), with second Betti number 2, is realizable by a diffeomorphism (respectively, homeomorphism).
In this paper we prove the conjecture of Molino that for every singular Riemannian foliation $(M,{\mathcal{F}})$, the partition $\overline{{\mathcal{F}}}$ given by the closures of the leaves of ${\mathcal{F}}$ is again a singular Riemannian foliation.
We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.
The detection of the bifurcation set of polynomial mapping ℝn → ℝp, n ⩾ p, in more than two variables remains an unsolved problem. In this note we provide a solution for n = p + 1 ⩾ 3.
For each discriminant $D>1$, McMullen constructed the Prym–Teichmüller curves $W_{D}(4)$ and $W_{D}(6)$ in ${\mathcal{M}}_{3}$ and ${\mathcal{M}}_{4}$, which constitute one of the few known infinite families of geometrically primitive Teichmüller curves. In the present paper, we determine for each $D$ the number and type of orbifold points on $W_{D}(6)$. These results, together with a previous result of the two authors in the genus $3$ case and with results of Lanneau–Nguyen and Möller, complete the topological characterisation of all Prym–Teichmüller curves and determine their genus. The study of orbifold points relies on the analysis of intersections of $W_{D}(6)$ with certain families of genus $4$ curves with extra automorphisms. As a side product of this study, we give an explicit construction of such families and describe their Prym–Torelli images, which turn out to be isomorphic to certain products of elliptic curves. We also give a geometric description of the flat surfaces associated to these families and describe the asymptotics of the genus of $W_{D}(6)$ for large $D$.
A foliation $(M,{\mathcal{F}})$ is said to be $2$-calibrated if it admits a closed 2-form $\unicode[STIX]{x1D714}$ making each leaf symplectic. By using approximately holomorphic techniques, a sequence $W_{k}$ of $2$-calibrated submanifolds of codimension-$2$ can be found for $(M,{\mathcal{F}},\unicode[STIX]{x1D714})$. Our main result says that the Lefschetz hyperplane theorem holds for the pairs $(F,F\cap W_{k})$, with $F$ any leaf of ${\mathcal{F}}$. This is applied to draw important consequences on the transverse geometry of such foliations.
We study tautological rings for high-dimensional manifolds, that is, for each smooth manifold $M$ the ring $R^{\ast }(M)$ of those characteristic classes of smooth fibre bundles with fibre $M$ which is generated by generalised Miller–Morita–Mumford classes. We completely describe these rings modulo nilpotent elements, when $M$ is a connected sum of copies of $S^{n}\times S^{n}$ for $n$ odd.
We introduce a new affinely invariant structure on smooth surfaces in ℝ3 by defining a family of reflections in all points of the surface. We show that the bifurcation set of this family has a special structure at ‘ points’, which are not detected by the flat geometry of the surface. These points (without an associated structure on the surface) have also arisen in the study of the centre symmetry set; using our technique we are able to explain how the points are created and annihilated in a generic family of surfaces. We also present the bifurcation set in a global setting.
In this paper, we determine the group of contact transformations modulo contact isotopies for Legendrian circle bundles over closed surfaces of non-positive Euler characteristic. These results extend and correct those presented by the first author in a former work. The main ingredient we use is connectedness of certain spaces of embeddings of surfaces into contact 3-manifolds. This connectedness question is also studied for itself with a number of (hopefully instructive) examples.
We consider a developable surface normal to a surface along a curve on the surface. We call it a normal developable surface along the curve on the surface. We investigate the uniqueness and the singularities of such developable surfaces. We discover two new invariants of curves on a surface that characterize these singularities.
We exhibit a knot $P$ in the solid torus, representing a generator of first homology, such that for any knot $K$ in the 3-sphere, the satellite knot with pattern $P$ and companion $K$ is not smoothly slice in any homology 4-ball. As a consequence, we obtain a knot in a homology 3-sphere that does not bound a piecewise-linear disk in any homology 4-ball.
This paper investigates the space of codimension zero embeddings of a Poincaré duality space in a disk. One of our main results exhibits a tower that interpolates from the space of Poincaré immersions to a certain space of “unlinked” Poincaré embeddings. The layers of this tower are described in terms of the coefficient spectra of the identity appearing in Goodwillie’s homotopy functor calculus. We also answer a question posed to us by Sylvain Cappell. The appendix proposes a conjectural relationship between our tower and the manifold calculus tower for the smooth embedding space.
We give a method for constructing a Legendrian representative of a knot in $S^{3}$ which realizes its maximal Thurston–Bennequin number under a certain condition. The method utilizes Stein handle decompositions of $D^{4}$, and the resulting Legendrian representative is often very complicated (relative to the complexity of the topological knot type). As an application, we construct infinitely many knots in $S^{3}$ each of which yields a reducible 3-manifold by a Legendrian surgery in the standard tight contact structure. This disproves a conjecture of Lidman and Sivek.