To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize, using commuting zero-flux homologies, those volume-preserving vector fields on a 3-manifold that are steady solutions of the Euler equations for some Riemannian metric. This result extends Sullivan’s homological characterization of geodesible flows in the volume-preserving case. As an application, we show that steady Euler flows cannot be constructed using plugs (as in Wilson’s or Kuperberg’s constructions). Analogous results in higher dimensions are also proved.
We prove some open book embedding results in the contact category with a constructive approach. As a consequence, we give an alternative proof of a theorem of Etnyre and Lekili that produces a large class of contact 3-manifolds admitting contact open book embeddings in the standard contact 5-sphere. We also show that all the Ustilovsky $(4m+1)$-spheres contact open book embed in the standard contact $(4m+3)$-sphere.
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
We show that various classes of products of manifolds do not support transitive Anosov diffeomorphisms. Exploiting the Ruelle–Sullivan cohomology class, we prove that the product of a negatively curved manifold with a rational homology sphere does not support transitive Anosov diffeomorphisms. We extend this result to products of finitely many negatively curved manifolds of dimension at least three with a rational homology sphere that has vanishing simplicial volume. As an application of this study, we obtain new examples of manifolds that do not support transitive Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups and certain products of aspherical manifolds.
We extend the unpublished work of Handel and Miller on the classification, up to isotopy, of endperiodic automorphisms of surfaces. We give the Handel–Miller construction of the geodesic laminations, give an axiomatic theory for pseudo-geodesic laminations, show that the geodesic laminations satisfy the axioms, and prove that pseudo-geodesic laminations satisfying our axioms are ambiently isotopic to the geodesic laminations. The axiomatic approach allows us to show that the given endperiodic automorphism is isotopic to a smooth endperiodic automorphism preserving smooth laminations ambiently isotopic to the original ones. Using the axioms, we also prove the ‘transfer theorem’ for foliations of 3-manifolds, namely that, if two depth-one foliations ${\mathcal{F}}$ and ${\mathcal{F}}^{\prime }$ are transverse to a common one-dimensional foliation ${\mathcal{L}}$ whose monodromy on the non-compact leaves of ${\mathcal{F}}$ exhibits the nice dynamics of Handel–Miller theory, then ${\mathcal{L}}$ also induces monodromy on the non-compact leaves of ${\mathcal{F}}^{\prime }$ exhibiting the same nice dynamics. Our theory also applies to surfaces with infinitely many ends.
We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^{2}$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^{2}$ which does not admit a centre foliation.
We extend two known existence results to simply connected manifolds with positive sectional curvature: we show that there exist pairs of simply connected positively-curved manifolds that are tangentially homotopy equivalent but not homeomorphic, and we deduce that an open manifold may admit a pair of non-homeomorphic simply connected and positively-curved souls. Examples of such pairs are given by explicit pairs of Eschenburg spaces. To deduce the second statement from the first, we extend our earlier work on the stable converse soul question and show that it has a positive answer for a class of spaces that includes all Eschenburg spaces.
Let $f:M\rightarrow M$ be a dynamically coherent partially hyperbolic diffeomorphism whose center foliation has all its leaves compact. We prove that if the unstable bundle of $f$ is one-dimensional, then the volume of center leaves must be bounded in $M$.
We provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.
Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some restrictions on the image of the classifying map $m \colon \Pi_b \to \Gamma_g$ in terms of the coinvariant homology of $\Pi_g$. In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative irregularity g−s, then $g \leq 1+ 6s$, and we show that this effectively constrains the possible choices for π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew the usual obstructions.
We consider a smooth curve with singular points in the Euclidean space. As a smooth curve with singular points, we have introduced a framed curve or a framed immersion. A framed immersion is a smooth curve with a moving frame and the pair is an immersion. We define an evolute and a focal surface of a framed immersion in the Euclidean space. The evolutes and focal surfaces of framed immersions are generalizations of each object of regular space curves. We give relationships between singularities of the evolutes and of the focal surfaces. Moreover, we consider properties of the evolutes, focal surfaces and repeated evolutes.
For a smooth manifold N denote by Em(N) the set of smooth isotopy classes of smooth embeddings N → ℝm. A description of the set Em(Sp × Sq) was known only for p = q = 0 or for p = 0, m ≠ q + 2 or for 2m ⩾ 2(p + q) + max{p, q} + 4. (The description was given in terms of homotopy groups of spheres and of Stiefel manifolds.) For m ⩾ 2p + q + 3 we introduce an abelian group structure on Em(Sp × Sq) and describe this group ‘up to an extension problem’. This result has corollaries which, under stronger dimension restrictions, more explicitly describe Em(Sp × Sq). The proof is based on relations between sets Em(N) for different N and m, in particular, on a recent exact sequence of M. Skopenkov.
An n-dimensional analogue of the Klein bottle arose in our study of topological complexity of planar polygon spaces. We determine its integral cohomology algebra and stable homotopy type, and give an explicit immersion and embedding in Euclidean space.
This paper concerns extension of maps using obstruction theory under a non-classical viewpoint. It is given a classification of homotopy classes of maps and as an application it is presented a simple proof of a theorem by Adachi about equivalence of vector bundles. Also it is proved that, under certain conditions, two embeddings are homotopic up to surgery if and only if the respective normal bundles are SO-equivalent.
We compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.
Let M be a smooth compact manifold with boundary. Under some geometric conditions on M, a homotopical model for the pair (M, ∂M) can be recovered from the configuration category of M \ ∂M. The grouplike monoid of derived homotopy automorphisms of the configuration category of M \ ∂M then acts on the homotopical model of (M, ∂M). That action is compatible with a better known homotopical action of the homeomorphism group of M \ ∂M on (M, ∂M).
A classic result due to Furstenberg is the strict ergodicity of the horocycle flow for a compact hyperbolic surface. Strict ergodicity is unique ergodicity with respect to a measure of full support, and therefore it implies minimality. The horocycle flow has been previously studied on minimal foliations by hyperbolic surfaces on closed manifolds, where it is known not to be minimal in general. In this paper, we prove that for the special case of Riemannian foliations, strict ergodicity of the horocycle flow still holds. This, in particular, proves that this flow is minimal, which establishes a conjecture proposed by Matsumoto. The main tool is a theorem due to Coudène, which he presented as an alternative proof for the surface case. It applies to two continuous flows defining a measure-preserving action of the affine group of the line on a compact metric space, precisely matching the foliated setting. In addition, we briefly discuss the application of Coudène’s theorem to other kinds of foliations.
This work is motivated by the question of whether there are spaces X for which the Farber–Grant symmetric topological complexity TCS(X) differs from the Basabe–González–Rudyak–Tamaki symmetric topological complexity TCΣ(X). For a projective space ${\open R}\hbox{P}^m$, it is known that $\hbox{TC}^S ({\open R}\hbox{P}^{m})$ captures, with a few potential exceptional cases, the Euclidean embedding dimension of ${\open R}\hbox{P}^{m}$. We now show that, for all m≥1, $\hbox{TC}^{\Sigma}({\open R}\hbox{P}^{m})$ is characterized as the smallest positive integer n for which there is a symmetric ${\open Z}_{2}$-biequivariant map Sm×Sm→Sn with a ‘monoidal’ behaviour on the diagonal. This result thus lies at the core of the efforts in the 1970s to characterize the embedding dimension of real projective spaces in terms of the existence of symmetric axial maps. Together with Nakaoka's description of the cohomology ring of symmetric squares, this allows us to compute both TC numbers in the case of ${\open R}\hbox{P}^{2^{e}}$ for e≥1. In particular, this leaves the torus S1×S1 as the only closed surface whose symmetric (symmetrized) TCS (TCΣ) invariant is currently unknown.
We characterise singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.
Let $Y$ be a homology sphere which contains an incompressible torus. We show that $Y$ cannot be an $L$-space, i.e. the rank of $\widehat{\text{HF}}(Y)$ is greater than $1$. In fact, if the homology sphere $Y$ is an irreducible $L$-space, then $Y$ is $S^{3}$, the Poincaré sphere $\unicode[STIX]{x1D6F4}(2,3,5)$ or hyperbolic.