We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a smooth curve with singular points in the Euclidean space. As a smooth curve with singular points, we have introduced a framed curve or a framed immersion. A framed immersion is a smooth curve with a moving frame and the pair is an immersion. We define an evolute and a focal surface of a framed immersion in the Euclidean space. The evolutes and focal surfaces of framed immersions are generalizations of each object of regular space curves. We give relationships between singularities of the evolutes and of the focal surfaces. Moreover, we consider properties of the evolutes, focal surfaces and repeated evolutes.
For a smooth manifold N denote by Em(N) the set of smooth isotopy classes of smooth embeddings N → ℝm. A description of the set Em(Sp × Sq) was known only for p = q = 0 or for p = 0, m ≠ q + 2 or for 2m ⩾ 2(p + q) + max{p, q} + 4. (The description was given in terms of homotopy groups of spheres and of Stiefel manifolds.) For m ⩾ 2p + q + 3 we introduce an abelian group structure on Em(Sp × Sq) and describe this group ‘up to an extension problem’. This result has corollaries which, under stronger dimension restrictions, more explicitly describe Em(Sp × Sq). The proof is based on relations between sets Em(N) for different N and m, in particular, on a recent exact sequence of M. Skopenkov.
An n-dimensional analogue of the Klein bottle arose in our study of topological complexity of planar polygon spaces. We determine its integral cohomology algebra and stable homotopy type, and give an explicit immersion and embedding in Euclidean space.
This paper concerns extension of maps using obstruction theory under a non-classical viewpoint. It is given a classification of homotopy classes of maps and as an application it is presented a simple proof of a theorem by Adachi about equivalence of vector bundles. Also it is proved that, under certain conditions, two embeddings are homotopic up to surgery if and only if the respective normal bundles are SO-equivalent.
We compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.
Let M be a smooth compact manifold with boundary. Under some geometric conditions on M, a homotopical model for the pair (M, ∂M) can be recovered from the configuration category of M \ ∂M. The grouplike monoid of derived homotopy automorphisms of the configuration category of M \ ∂M then acts on the homotopical model of (M, ∂M). That action is compatible with a better known homotopical action of the homeomorphism group of M \ ∂M on (M, ∂M).
A classic result due to Furstenberg is the strict ergodicity of the horocycle flow for a compact hyperbolic surface. Strict ergodicity is unique ergodicity with respect to a measure of full support, and therefore it implies minimality. The horocycle flow has been previously studied on minimal foliations by hyperbolic surfaces on closed manifolds, where it is known not to be minimal in general. In this paper, we prove that for the special case of Riemannian foliations, strict ergodicity of the horocycle flow still holds. This, in particular, proves that this flow is minimal, which establishes a conjecture proposed by Matsumoto. The main tool is a theorem due to Coudène, which he presented as an alternative proof for the surface case. It applies to two continuous flows defining a measure-preserving action of the affine group of the line on a compact metric space, precisely matching the foliated setting. In addition, we briefly discuss the application of Coudène’s theorem to other kinds of foliations.
This work is motivated by the question of whether there are spaces X for which the Farber–Grant symmetric topological complexity TCS(X) differs from the Basabe–González–Rudyak–Tamaki symmetric topological complexity TCΣ(X). For a projective space ${\open R}\hbox{P}^m$, it is known that $\hbox{TC}^S ({\open R}\hbox{P}^{m})$ captures, with a few potential exceptional cases, the Euclidean embedding dimension of ${\open R}\hbox{P}^{m}$. We now show that, for all m≥1, $\hbox{TC}^{\Sigma}({\open R}\hbox{P}^{m})$ is characterized as the smallest positive integer n for which there is a symmetric ${\open Z}_{2}$-biequivariant map Sm×Sm→Sn with a ‘monoidal’ behaviour on the diagonal. This result thus lies at the core of the efforts in the 1970s to characterize the embedding dimension of real projective spaces in terms of the existence of symmetric axial maps. Together with Nakaoka's description of the cohomology ring of symmetric squares, this allows us to compute both TC numbers in the case of ${\open R}\hbox{P}^{2^{e}}$ for e≥1. In particular, this leaves the torus S1×S1 as the only closed surface whose symmetric (symmetrized) TCS (TCΣ) invariant is currently unknown.
We characterise singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.
Let $Y$ be a homology sphere which contains an incompressible torus. We show that $Y$ cannot be an $L$-space, i.e. the rank of $\widehat{\text{HF}}(Y)$ is greater than $1$. In fact, if the homology sphere $Y$ is an irreducible $L$-space, then $Y$ is $S^{3}$, the Poincaré sphere $\unicode[STIX]{x1D6F4}(2,3,5)$ or hyperbolic.
In this paper, we obtain a new result for overtwisted contact $(+1/n)$-surgery. We also give a counterexample to a conjecture by James Conway on overtwistedness of manifolds obtained by contact surgery.
In this paper we use tools from differential topology to give a geometric description of cohomology for Hilbert manifolds. Our model is Quillen’s geometric description of cobordism groups for finite-dimensional smooth manifolds [Quillen, ‘Elementary proofs of some results of cobordism theory using steenrod operations’, Adv. Math., 7 (1971)]. Quillen stresses the fact that this construction allows the definition of Gysin maps for ‘oriented’ proper maps. For finite-dimensional manifolds one has a Gysin map in singular cohomology which is based on Poincaré duality, hence it is not clear how to extend it to infinite-dimensional manifolds. But perhaps one can overcome this difficulty by giving a Quillen type description of singular cohomology for Hilbert manifolds. This is what we do in this paper. Besides constructing a general Gysin map, one of our motivations was a geometric construction of equivariant cohomology, which even for a point is the cohomology of the infinite-dimensional space $BG$, which has a Hilbert manifold model. Besides that, we demonstrate the use of such a geometric description of cohomology by several other applications. We give a quick description of characteristic classes of a finite-dimensional vector bundle and apply it to a generalized Steenrod representation problem for Hilbert manifolds and define a notion of a degree of proper oriented Fredholm maps of index $0$.
We discuss the cobordism type of spin manifolds with non-negative sectional curvature. We show that in each dimension 4k ⩾ 12, there are infinitely many cobordism types of simply connected and non-negatively curved spin manifolds. Moreover, we raise and analyse a question about possible cobordism obstructions to non-negative curvature.
Let $n>3$, and let $L$ be a Lagrangian embedding of $\mathbb{R}^{n}$ into the cotangent bundle $T^{\ast }\mathbb{R}^{n}$ of $\mathbb{R}^{n}$ that agrees with the cotangent fiber $T_{x}^{\ast }\mathbb{R}^{n}$ over a point $x\neq 0$ outside a compact set. Assume that $L$ is disjoint from the cotangent fiber at the origin. The projection of $L$ to the base extends to a map of the $n$-sphere $S^{n}$ into $\mathbb{R}^{n}\setminus \{0\}$. We show that this map is homotopically trivial, answering a question of Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in $T^{\ast }\mathbb{R}^{n}$, under suitable dimension and Maslov index hypotheses. The proofs combine techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with symplectic field theory.
We work in the smooth category. The following problem was suggested by E. Rees in 2002: describe the precomposition action of self-diffeomorphisms of Sp × Sq on the set of isotopy classes of embeddings Sp × Sq → ℝm.
Let G: Sp × Sq → ℝm be an embedding such that
is null-homotopic for some pair of different points a, b ∈ Sp. We prove the following statement: if ψ is an autodiffeomorphism of Sp × Sq identical on a neighbourhood of a × Sq for some a ∈ Sp and p ⩽ q and 2m ⩾ 3p +3q + 4, then G◦ ψ is isotopic to G.
Let N be an oriented (p + q)-manifold and let f, g be isotopy classes of embeddings N → ℝm, Sp × Sq → ℝm, respectively. As a corollary we obtain that under certain conditions for orientation-preserving embeddings s: Sp × Dq → N the Sp-parametric embedded connected sum f#sg depends only on f, g and the homology class of s|Sp × 0.
We use elementary skein theory to prove a version of a result of Stylianakis (Stylianakis, The normal closure of a power of a half-twist has infinite index in the mapping class group of a punctured sphere, arXiv:1511.02912) who showed that under mild restrictions on m and n, the normal closure of the mth power of a half-twist has infinite index in the mapping class group of a sphere with 2n punctures.
Every cohomology ring isomorphism between two non-singular complete toric varieties (respectively, two quasitoric manifolds), with second Betti number 2, is realizable by a diffeomorphism (respectively, homeomorphism).
In this paper we prove the conjecture of Molino that for every singular Riemannian foliation $(M,{\mathcal{F}})$, the partition $\overline{{\mathcal{F}}}$ given by the closures of the leaves of ${\mathcal{F}}$ is again a singular Riemannian foliation.
We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.
The detection of the bifurcation set of polynomial mapping ℝn → ℝp, n ⩾ p, in more than two variables remains an unsolved problem. In this note we provide a solution for n = p + 1 ⩾ 3.