We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study moduli spaces of d-dimensional manifolds with embedded particles and discs, which we refer to as decorations. These spaces admit a model in which points are unparametrised d-dimensional manifolds in
$\mathbb{R}^\infty$
with particles and discs constrained to it. We compare this to the space of d-dimensional manifolds in
$\mathbb{R}^\infty$
with particles and discs that are no longer constrained, i.e. the decorations are decoupled. We show that under certain conditions these spaces cannot be distinguished by homology groups within a range. This generalises work by Bödigheimer–Tillmann for oriented surfaces to different tangential structures and also to higher dimensional manifolds. We also extend this result to moduli spaces with more general submanifolds as decorations and specialise in the case of decorations being embedded circles.
We define a graph encoding the structure of contact surgery on contact
$3$
-manifolds and analyse its basic properties and some of its interesting subgraphs.
In this note, we show that given a closed connected oriented
$3$
-manifold M, there exists a knot K in M such that the manifold
$M'$
obtained from M by performing an integer surgery admits an open book decomposition which embeds into the trivial open book of the
$5$
-sphere
$S^5.$
The trace of the $n$-framed surgery on a knot in $S^{3}$ is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded $2$-sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable $3$-dimensional knot invariants. For each $n$, this provides conditions that imply a knot is topologically $n$-shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.
Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
In this paper, we study distance one surgeries between lens spaces L(p, 1) with p ≥ 5 prime and lens spaces L(n, 1) for $$n \in \mathbb{Z}$$ and band surgeries from T (2, p) to T (2, n). In particular, we prove that L(n, 1) is obtained by a distance one surgery from L(5, 1) only if n=±1, 4, ±5, 6 or ±9, and L(n, 1) is obtained by a distance one surgery from L(7, 1) if and only if n=±1, 3, 6, 7, 8 or 11.
Let X be a 4-dimensional toric orbifold. If $H^{3}(X)$ has a non-trivial odd primary torsion, then we show that X is homotopy equivalent to the wedge of a Moore space and a CW-complex. As a corollary, given two 4-dimensional toric orbifolds having no 2-torsion in the cohomology, we prove that they have the same homotopy type if and only their integral cohomology rings are isomorphic.
We exploit the Galois symmetries of the little disks operads to show that many differentials in the Goodwillie–Weiss spectral sequences approximating the homology and homotopy of knot spaces vanish at a prime $p$. Combined with recent results on the relationship between embedding calculus and finite-type theory, we deduce that the $(n+1)$th Goodwillie–Weiss approximation is a $p$-local universal Vassiliev invariant of degree $\leq n$ for every $n \leq p + 1$.
We show a rigidity theorem for the Seiberg–Witten invariants mod 2 for families of spin 4-manifolds. A mechanism of this rigidity theorem also gives a family version of 10/8-type inequality. As an application, we prove the existence of non-smoothable topological families of 4-manifolds whose fiber, base space, and total space are smoothable as manifolds. These non-smoothable topological families provide new examples of $4$-manifolds $M$ for which the inclusion maps $\operatorname {Diff}(M) \hookrightarrow \operatorname {Homeo}(M)$ are not weak homotopy equivalences. We shall also give a new series of non-smoothable topological actions on some spin $4$-manifolds.
We construct a ring homomorphism comparing the tautological ring, fixing a point, of a closed smooth manifold with that of its stabilisation by S2a×S2b.
Many authors have studied the dynamics of hyperbolic transcendental entire functions; these are functions for which the postsingular set is a compact subset of the Fatou set. Equivalently, they are characterized as being expanding. Mihaljević-Brandt studied a more general class of maps for which finitely many of their postsingular points can be in their Julia set, and showed that these maps are also expanding with respect to a certain orbifold metric. In this paper we generalize these ideas further, and consider a class of maps for which the postsingular set is not even bounded. We are able to prove that these maps are also expanding with respect to a suitable orbifold metric, and use this expansion to draw conclusions on the topology and dynamics of the maps. In particular, we generalize existing results for hyperbolic functions, giving criteria for the boundedness of Fatou components and local connectivity of Julia sets. As part of this study, we develop some novel results on hyperbolic orbifold metrics. These are of independent interest, and may have future applications in holomorphic dynamics.
A spectral sequence is established whose $E_{2}$ page is Bar-Natan's variant of Khovanov homology and which abuts to a deformation of instanton homology for knots and links. This spectral sequence arises as a specialization of a spectral sequence whose $E_{2}$ page is a characteristic-2 version of $F_{5}$ homology in Khovanov's classification.
We prove that the only relation imposed on the Hodge and Chern numbers of a compact Kähler manifold by the existence of a nowhere zero holomorphic one-form is the vanishing of the Hirzebruch genus. We also treat the analogous problem for nowhere zero closed one-forms on smooth manifolds.
The homotopy theory of gauge groups has received considerable attention in recent decades. In this work, we study the homotopy theory of gauge groups over some high-dimensional manifolds. To be more specific, we study gauge groups of bundles over (n − 1)-connected closed 2n-manifolds, the classification of which was determined by Wall and Freedman in the combinatorial category. We also investigate the gauge groups of the total manifolds of sphere bundles based on the classical work of James and Whitehead. Furthermore, other types of 2n-manifolds are also considered. In all the cases, we show various homotopy decompositions of gauge groups. The methods are combinations of manifold topology and various techniques in homotopy theory.
We work in the smooth category. Let $N$ be a closed connected orientable 4-manifold with torsion free $H_1$, where $H_q := H_q(N; {\mathbb Z} )$. Our main result is a readily calculable classification of embeddings$N \to {\mathbb R}^7$up to isotopy, with an indeterminacy. Such a classification was only known before for $H_1=0$ by our earlier work from 2008. Our classification is complete when $H_2=0$ or when the signature of $N$ is divisible neither by 64 nor by 9.
The group of knots $S^4\to {\mathbb R}^7$ acts on the set of embeddings $N\to {\mathbb R}^7$ up to isotopy by embedded connected sum. In Part I we classified the quotient of this action. The main novelty of this paper is the description of this action for $H_1 \ne 0$, with an indeterminacy.
Besides the invariants of Part I, detecting the action of knots involves a refinement of the Kreck invariant from our work of 2008.
For $N=S^1\times S^3$ we give a geometrically defined 1–1 correspondence between the set of isotopy classes of embeddings and a certain explicitly defined quotient of the set ${\mathbb Z} \oplus {\mathbb Z} \oplus {\mathbb Z} _{12}$.
Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.
Using open books, we prove the existence of a non-vanishing steady solution to the Euler equations for some metric in every homotopy class of non-vanishing vector fields of any odd-dimensional manifold. As a corollary, any such field can be realized in an invariant submanifold of a contact Reeb field on a sphere of high dimension. The solutions constructed are geodesible and hence of Beltrami type, and can be modified to obtain chaotic fluids. We characterize Beltrami fields in odd dimensions and show that there always exist volume-preserving Beltrami fields which are neither geodesible nor Euler flows for any metric. This contrasts with the three-dimensional case, where every volume-preserving Beltrami field is a steady Euler flow for some metric. Finally, we construct a non-vanishing Beltrami field (which is not necessarily volume-preserving) without periodic orbits in every manifold of odd dimension greater than three.
We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic curves contributing to the Gromov-Witten (GW) invariants. In view of Joyce’s conjecture, these Lagrangians are expected to have special Lagrangian representatives and hence solve a special Lagrangian enumerative problem in Calabi-Yau threefolds.
We apply this construction to the tropical curves obtained from the 2,875 lines on the quintic Calabi-Yau threefold. Each admissible tropical curve gives a Lagrangian rational homology sphere in the corresponding mirror quintic threefold and the Joyce’s weight of each of these Lagrangians equals the multiplicity of the corresponding tropical curve.
As applications, we show that disjoint curves give pairwise homologous but non-Hamiltonian isotopic Lagrangians and we check in an example that
$>300$
mutually disjoint curves (and hence Lagrangians) arise. Dehn twists along these Lagrangians generate an abelian subgroup of the symplectic mapping class group with that rank.
We calculate the integral equivariant cohomology, in terms of generators and relations, of locally standard torus orbifolds whose odd degree ordinary cohomology vanishes. We begin by studying GKM-orbifolds, which are more general, before specializing to half-dimensional torus actions.
We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.