We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In order to investigate envelopes for singular surfaces, we introduce one- and two-parameter families of framed surfaces and the basic invariants, respectively. By using the basic invariants, the existence and uniqueness theorems of one- and two-parameter families of framed surfaces are given. Then we define envelopes of one- and two-parameter families of framed surfaces and give the existence conditions of envelopes which are called envelope theorems. As an application of the envelope theorems, we show that the projections of singular solutions of completely integrable first-order partial differential equations are envelopes.
Suppose that
$N_1$
and
$N_2$
are closed smooth manifolds of dimension n that are homeomorphic. We prove that the spaces of smooth knots,
$ \operatorname {\mathrm {Emb}}(\mathrm {S}^1, N_1)$
and
$ \operatorname {\mathrm {Emb}}(\mathrm {S}^1, N_2),$
have the same homotopy
$(2n-7)$
-type. In the four-dimensional case, this means that the spaces of smooth knots in homeomorphic
$4$
-manifolds have sets
$\pi _0$
of components that are in bijection, and the corresponding path components have the same fundamental groups
$\pi _1$
. The result about
$\pi _0$
is well-known and elementary, but the result about
$\pi _1$
appears to be new. The result gives a negative partial answer to a question of Oleg Viro. Our proof uses the Goodwillie–Weiss embedding tower. We give a new model for the quadratic stage of the Goodwillie–Weiss tower, and prove that the homotopy type of the quadratic approximation of the space of knots in N does not depend on the smooth structure on N. Our results also give a lower bound on
$\pi _2 \operatorname {\mathrm {Emb}}(\mathrm {S}^1, N)$
. We use our model to show that for every choice of basepoint, each of the homotopy groups,
$\pi _1$
and
$\pi _2,$
of
$ \operatorname {\mathrm {Emb}}(\mathrm {S}^1, \mathrm {S}^1\times \mathrm {S}^3)$
contains an infinitely generated free abelian group.
We introduce a generalization of the Lisca–Ozsváth–Stipsicz–Szabó Legendrian invariant
${\mathfrak L}$
to links in every rational homology sphere, using the collapsed version of link Floer homology. We represent a Legendrian link L in a contact 3-manifold
${(M,\xi)}$
with a diagram D, given by an open book decomposition of
${(M,\xi)}$
adapted to L, and we construct a chain complex
${cCFL^-(D)}$
with a special cycle in it denoted by
${\mathfrak L(D)}$
. Then, given two diagrams
${D_1}$
and
${D_2}$
which represent Legendrian isotopic links, we prove that there is a map between the corresponding chain complexes that induces an isomorphism in homology and sends
${\mathfrak L(D_1)}$
into
${\mathfrak L(D_2)}$
. Moreover, a connected sum formula is also proved and we use it to give some applications about non-loose Legendrian links; that are links such that the restriction of
${\xi}$
on their complement is tight.
Building upon our earlier work with M. C. Hughes, we construct many new smooth structures on closed simply connected nonspin
$4$
-manifolds with positive signature. We also provide numerical and asymptotic upper bounds on the function
$\lambda (\sigma )$
that was defined in our earlier work.
We show that standard cyclic actions on Brieskorn homology 3-spheres with non-empty fixed set do not extend smoothly to any contractible smooth 4-manifold it may bound. The quotient of any such extension would be an acyclic 4-manifold with boundary a related Brieskorn homology sphere. We briefly discuss well-known invariants of homology spheres that obstruct acyclic bounding 4-manifolds and then use a method based on equivariant Yang–Mills moduli spaces to rule out extensions of the actions.
We use the divide-and-conquer and scanning algorithms for calculating Khovanov cohomology directly on the Lee- or Bar-Natan deformations of the Khovanov complex to give an alternative way to compute Rasmussen s-invariants of knots. By disregarding generators away from homological degree 0, we can considerably improve the efficiency of the algorithm. With a slight modification, we can also apply it to a refinement of Lipshitz–Sarkar.
We observe an inductive structure in a large class of Artin groups of finite real, complex and affine types and exploit this information to deduce the Farrell–Jones isomorphism conjecture for these groups.
We obtain a new theorem for the non-properness set $S_f$ of a non-singular polynomial mapping $f:\mathbb C^n \to \mathbb C^n$. In particular, our result shows that if f is a counterexample to the Jacobian conjecture, then $S_f\cap Z \neq \emptyset $, for every hypersurface Z dominated by $\mathbb C^{n-1}$ on which some non-singular polynomial $h: \mathbb C^{n}\to \mathbb C$ is constant. Also, we present topological approaches to the Jacobian conjecture in $\mathbb C^n$. As applications, we extend bidimensional results of Rabier, Lê and Weber to higher dimensions.
We give a generators-and-relations description of differential graded algebras recently introduced by Ozsváth and Szabó for the computation of knot Floer homology. We also compute the homology of these algebras and determine when they are formal.
The aim of this paper is to show the importance of the Steenrod construction of homology theories for the disassembly process in surgery on a generalized n-manifold Xn, in order to produce an element of generalized homology theory, which is basic for calculations. In particular, we show how to construct an element of the nth Steenrod homology group $H^{st}_{n} (X^{n}, \mathbb {L}^+)$, where 𝕃+ is the connected covering spectrum of the periodic surgery spectrum 𝕃, avoiding the use of the geometric splitting procedure, the use of which is standard in surgery on topological manifolds.
We characterize, using commuting zero-flux homologies, those volume-preserving vector fields on a 3-manifold that are steady solutions of the Euler equations for some Riemannian metric. This result extends Sullivan’s homological characterization of geodesible flows in the volume-preserving case. As an application, we show that steady Euler flows cannot be constructed using plugs (as in Wilson’s or Kuperberg’s constructions). Analogous results in higher dimensions are also proved.
We prove some open book embedding results in the contact category with a constructive approach. As a consequence, we give an alternative proof of a theorem of Etnyre and Lekili that produces a large class of contact 3-manifolds admitting contact open book embeddings in the standard contact 5-sphere. We also show that all the Ustilovsky $(4m+1)$-spheres contact open book embed in the standard contact $(4m+3)$-sphere.
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
We show that various classes of products of manifolds do not support transitive Anosov diffeomorphisms. Exploiting the Ruelle–Sullivan cohomology class, we prove that the product of a negatively curved manifold with a rational homology sphere does not support transitive Anosov diffeomorphisms. We extend this result to products of finitely many negatively curved manifolds of dimension at least three with a rational homology sphere that has vanishing simplicial volume. As an application of this study, we obtain new examples of manifolds that do not support transitive Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups and certain products of aspherical manifolds.
We extend the unpublished work of Handel and Miller on the classification, up to isotopy, of endperiodic automorphisms of surfaces. We give the Handel–Miller construction of the geodesic laminations, give an axiomatic theory for pseudo-geodesic laminations, show that the geodesic laminations satisfy the axioms, and prove that pseudo-geodesic laminations satisfying our axioms are ambiently isotopic to the geodesic laminations. The axiomatic approach allows us to show that the given endperiodic automorphism is isotopic to a smooth endperiodic automorphism preserving smooth laminations ambiently isotopic to the original ones. Using the axioms, we also prove the ‘transfer theorem’ for foliations of 3-manifolds, namely that, if two depth-one foliations ${\mathcal{F}}$ and ${\mathcal{F}}^{\prime }$ are transverse to a common one-dimensional foliation ${\mathcal{L}}$ whose monodromy on the non-compact leaves of ${\mathcal{F}}$ exhibits the nice dynamics of Handel–Miller theory, then ${\mathcal{L}}$ also induces monodromy on the non-compact leaves of ${\mathcal{F}}^{\prime }$ exhibiting the same nice dynamics. Our theory also applies to surfaces with infinitely many ends.
We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^{2}$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^{2}$ which does not admit a centre foliation.
We extend two known existence results to simply connected manifolds with positive sectional curvature: we show that there exist pairs of simply connected positively-curved manifolds that are tangentially homotopy equivalent but not homeomorphic, and we deduce that an open manifold may admit a pair of non-homeomorphic simply connected and positively-curved souls. Examples of such pairs are given by explicit pairs of Eschenburg spaces. To deduce the second statement from the first, we extend our earlier work on the stable converse soul question and show that it has a positive answer for a class of spaces that includes all Eschenburg spaces.
Let $f:M\rightarrow M$ be a dynamically coherent partially hyperbolic diffeomorphism whose center foliation has all its leaves compact. We prove that if the unstable bundle of $f$ is one-dimensional, then the volume of center leaves must be bounded in $M$.
We provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.
Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some restrictions on the image of the classifying map $m \colon \Pi_b \to \Gamma_g$ in terms of the coinvariant homology of $\Pi_g$. In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative irregularity g−s, then $g \leq 1+ 6s$, and we show that this effectively constrains the possible choices for π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew the usual obstructions.