We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A left-variable word over an alphabet A is a word over $A \cup \{\star \}$ whose first letter is the distinguished symbol $\star $ standing for a placeholder. The ordered variable word theorem ($\mathsf {OVW}$), also known as Carlson–Simpson’s theorem, is a tree partition theorem, stating that for every finite alphabet A and every finite coloring of the words over A, there exists a word $c_0$ and an infinite sequence of left-variable words $w_1, w_2, \dots $ such that $\{ c_0 \cdot w_1[a_1] \cdot \dots \cdot w_k[a_k] : k \in \mathbb {N}, a_1, \dots , a_k \in A \}$ is monochromatic.
In this article, we prove that $\mathsf {OVW}$ is $\Pi ^0_4$-conservative over $\mathsf {RCA}_0 + \mathsf {B}\Sigma ^0_2$. This implies in particular that $\mathsf {OVW}$ does not imply $\mathsf {ACA}_0$ over $\mathsf {RCA}_0$. This is the first principle for which the only known separation from $\mathsf {ACA}_0$ involves non-standard models.
We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$-formula $\varphi (x)$; the parameter is the size of $\varphi $. This parameterization focusses attention on instances where n is large compared to the size of $\varphi $. We show unconditionally that this problem does not belong to the parameterized analogue of $\mathsf {AC}^0$. From this we derive that certain natural upper bounds on the complexity of our parameterized problem imply certain separations of classical complexity classes. This connection is obtained via an analysis of a parameterized halting problem. Some of these upper bounds follow assuming that $I\Delta _0$ proves the MRDP theorem in a certain weak sense.
Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models \mathsf {PA}$ and $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$, then ${\mathcal N}$ must be either an end or a cofinal extension of ${\mathcal M}$. In contrast, there are ${\mathcal M}^* \prec {\mathcal N}^* \models \mathsf {PA}^*$ such that $\operatorname {\mathrm {Lt}}({\mathcal N}^* / {\mathcal M}^*) \cong {\mathbf N}_5$ and ${\mathcal N}^*$ is neither an end nor a cofinal extension of ${\mathcal M}^*$.
Ultrafilters play a significant role in model theory to characterize logics having various compactness and interpolation properties. They also provide a general method to construct extensions of first-order logic having these properties. A main result of this paper is that every class $\Omega $ of uniform ultrafilters generates a $\Delta $-closed logic ${\mathcal {L}}_\Omega $. ${\mathcal {L}}_\Omega $ is $\omega $-relatively compact iff some $D\in \Omega $ fails to be $\omega _1$-complete iff ${\mathcal {L}}_\Omega $ does not contain the quantifier “there are uncountably many.” If $\Omega $ is a set, or if it contains a countably incomplete ultrafilter, then ${\mathcal {L}}_\Omega $ is not generated by Mostowski cardinality quantifiers. Assuming $\neg 0^\sharp $ or $\neg L^{\mu }$, if $D\in \Omega $ is a uniform ultrafilter over a regular cardinal $\nu $, then every family $\Psi $ of formulas in ${\mathcal {L}}_\Omega $ with $|\Phi |\leq \nu $ satisfies the compactness theorem. In particular, if $\Omega $ is a proper class of uniform ultrafilters over regular cardinals, ${\mathcal {L}}_\Omega $ is compact.
We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$. We provide several examples and additional characterisations; notably we show that $w$ is self-divisible if and only if $\equiv _w$ coincides with the strong congruence relation $\mathrel {\equiv ^{\mathrm {s}}_{w}}$, if and only if the quotient $(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$ is a profinite group. We also construct an ultrafilter $w$ such that $\equiv _w$ fails to be symmetric, and describe the interaction between the aforementioned quotient and the profinite completion $\hat {{\mathbb Z}}$ of the integers.
We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $-jump of models of an arbitrary completion T of $\mathrm {PA}$ we show that every countable ordinal $\alpha>\omega $ is realized as the Scott rank of a model of T.
A theory T is tight if different deductively closed extensions of T (in the same language) cannot be bi-interpretable. Many well-studied foundational theories are tight, including $\mathsf {PA}$ [39], $\mathsf {ZF}$, $\mathsf {Z}_2$, and $\mathsf {KM}$ [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories. We prove that restricting the Comprehension schema of $\mathsf {Z}_2$ and $\mathsf {KM}$ gives non-tight theories. Specifically, we show that $\mathsf {GB}$ and $\mathsf {ACA}_0$ each admit different bi-interpretable extensions, and the same holds for their extensions by adding $\Sigma ^1_k$-Comprehension, for $k \ge 1$. These results provide evidence that tightness characterizes $\mathsf {Z}_2$ and $\mathsf {KM}$ in a minimal way.
In this paper we will show that for every cut I of any countable nonstandard model $\mathcal {M}$ of $\mathrm {I}\Sigma _{1}$, each I-small $\Sigma _{1}$-elementary submodel of $\mathcal {M}$ is of the form of the set of fixed points of some proper initial self-embedding of $\mathcal {M}$ iff I is a strong cut of $\mathcal {M}$. Especially, this feature will provide us with some equivalent conditions with the strongness of the standard cut in a given countable model $\mathcal {M}$ of $ \mathrm {I}\Sigma _{1} $. In addition, we will find some criteria for extendability of initial self-embeddings of countable nonstandard models of $ \mathrm {I}\Sigma _{1} $ to larger models.
We study the first-order consequences of Ramsey’s Theorem for k-colourings of n-tuples, for fixed
$n, k \ge 2$
, over the relatively weak second-order arithmetic theory
$\mathrm {RCA}^*_0$
. Using the Chong–Mourad coding lemma, we show that in a model of
$\mathrm {RCA}^*_0$
that does not satisfy
$\Sigma ^0_1$
induction,
$\mathrm {RT}^n_k$
is equivalent to its relativization to any proper
$\Sigma ^0_1$
-definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe.
We give a complete axiomatization of the first-order consequences of
$\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$
for
$n \ge 3$
. We show that they form a non-finitely axiomatizable subtheory of
$\mathrm {PA}$
whose
$\Pi _3$
fragment coincides with
$\mathrm {B} \Sigma _1 + \exp $
and whose
$\Pi _{\ell +3}$
fragment for
$\ell \ge 1$
lies between
$\mathrm {I} \Sigma _\ell \Rightarrow \mathrm {B} \Sigma _{\ell +1}$
and
$\mathrm {B} \Sigma _{\ell +1}$
. We also give a complete axiomatization of the first-order consequences of
$\mathrm {RCA}^*_0 + \mathrm {RT}^2_k + \neg \mathrm {I} \Sigma _1$
. In general, we show that the first-order consequences of
$\mathrm {RCA}^*_0 + \mathrm {RT}^2_k$
form a subtheory of
$\mathrm {I} \Sigma _2$
whose
$\Pi _3$
fragment coincides with
$\mathrm {B} \Sigma _1 + \exp $
and whose
$\Pi _4$
fragment is strictly weaker than
$\mathrm {B} \Sigma _2$
but not contained in
$\mathrm {I} \Sigma _1$
.
Additionally, we consider a principle
$\Delta ^0_2$
-
$\mathrm {RT}^2_2$
which is defined like
$\mathrm {RT}^2_2$
but with both the
$2$
-colourings and the solutions allowed to be
$\Delta ^0_2$
-sets rather than just sets. We show that the behaviour of
$\Delta ^0_2$
-
$\mathrm {RT}^2_2$
over
$\mathrm {RCA}_0 + \mathrm {B}\Sigma ^0_2$
is in many ways analogous to that of
$\mathrm {RT}^2_2$
over
$\mathrm {RCA}^*_0$
, and that
$\mathrm {RCA}_0 + \mathrm {B} \Sigma ^0_2 + \Delta ^0_2$
-
$\mathrm {RT}^2_2$
is
$\Pi _4$
- but not
$\Pi _5$
-conservative over
$\mathrm {B} \Sigma _2$
. However, the statement we use to witness failure of
$\Pi _5$
-conservativity is not provable in
$\mathrm {RCA}_0 +\mathrm {RT}^2_2$
.
The current paper studies the formal properties of the Global Reflection Principle, to wit the assertion “All theorems of
$\mathrm {Th}$
are true,” where
$\mathrm {Th}$
is a theory in the language of arithmetic and the truth predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic is provable in the theory of compositional truth with bounded induction only (
$\mathrm {CT}_0$
). Furthermore, we extend the above result showing that
$\Sigma _1$
-uniform reflection over a theory of uniform Tarski biconditionals (
$\mathrm {UTB}^-$
) is provable in
$\mathrm {CT}_0$
, thus answering the question of Beklemishev and Pakhomov [2]. Finally, we introduce the notion of a prolongable satisfaction class and use it to study the structure of models of
$\mathrm {CT}_0$
. In particular, we provide a new model-theoretical characterization of theories of finite iterations of uniform reflection and present a new proof characterizing the arithmetical consequences of
$\mathrm {CT}_0$
.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
Several different versions of the theory of numerosities have been introduced in the literature. Here, we unify these approaches in a consistent frame through the notion of set of labels, relating numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce, by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a counting measure on the reals.
By a classical theorem of Harvey Friedman (1973), every countable nonstandard model
$\mathcal {M}$
of a sufficiently strong fragment of ZF has a proper rank-initial self-embedding j, i.e., j is a self-embedding of
$\mathcal {M}$
such that
$j[\mathcal {M}]\subsetneq \mathcal {M}$
, and the ordinal rank of each member of
$j[\mathcal {M}]$
is less than the ordinal rank of each element of
$\mathcal {M}\setminus j[\mathcal {M}]$
. Here, we investigate the larger family of proper initial-embeddings j of models
$\mathcal {M}$
of fragments of set theory, where the image of j is a transitive submodel of
$\mathcal {M}$
. Our results include the following three theorems. In what follows,
$\mathrm {ZF}^-$
is
$\mathrm {ZF}$
without the power set axiom;
$\mathrm {WO}$
is the axiom stating that every set can be well-ordered;
$\mathrm {WF}(\mathcal {M})$
is the well-founded part of
$\mathcal {M}$
; and
$\Pi ^1_\infty \text{-}\mathrm {DC}_\alpha $
is the full scheme of dependent choice of length
$\alpha $
.
Theorem A.
There is an
$\omega $
-standard countable nonstandard model
$\mathcal {M}$
of
$\mathrm {ZF}^-+\mathrm {WO}$
that carries no initial self-embedding
$j:\mathcal {M} \longrightarrow \mathcal {M}$
other than the identity embedding.
Theorem B.
Every countable
$\omega $
-nonstandard model
$\mathcal {M}$
of
$\ \mathrm {ZF}$
is isomorphic to a transitive submodel of the hereditarily countable sets of its own constructible universe
$L^{\mathcal {M}}$
.
Theorem C.
The following three conditions are equivalent for a countable nonstandard model
$\mathcal {M}$
of
$\mathrm {ZF}^{-}+\mathrm {WO}+\forall \alpha \ \Pi ^1_\infty \text{-}\mathrm {DC}_\alpha $
.
(I) There is a cardinal in
$\mathcal {M}$
that is a strict upper bound for the cardinality of each member of
$\mathrm {WF}(\mathcal {M})$
.
(II)
$\mathrm {WF}(\mathcal {M})$
satisfies the powerset axiom.
(III) For all
$n \in \omega $
and for all
$b \in M$
, there exists a proper initial self-embedding
$j: \mathcal {M} \longrightarrow \mathcal {M}$
such that
$b \in \mathrm {rng}(j)$
and
$j[\mathcal {M}] \prec _n \mathcal {M}$
.
There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “
$\mathrm {T}$
is
$\Sigma _n$
-ill” is a canonical example of a
$\Sigma _{n+1}$
formula that is
$\Pi _{n+1}$
-conservative over
$\mathrm {T}$
.
We develop an untyped framework for the multiverse of set theory. $\mathsf {ZF}$ is extended with semantically motivated axioms utilizing the new symbols $\mathsf {Uni}(\mathcal {U})$ and $\mathsf {Mod}(\mathcal {U, \sigma })$, expressing that $\mathcal {U}$ is a universe and that $\sigma $ is true in the universe $\mathcal {U}$, respectively. Here $\sigma $ ranges over the augmented language, leading to liar-style phenomena that are analyzed. The framework is both compatible with a broad range of multiverse conceptions and suggests its own philosophically and semantically motivated multiverse principles. In particular, the framework is closely linked with a deductive rule of Necessitation expressing that the multiverse theory can only prove statements that it also proves to hold in all universes. We argue that this may be philosophically thought of as a Copernican principle that the background theory does not hold a privileged position over the theories of its internal universes. Our main mathematical result is a lemma encapsulating a technique for locally interpreting a wide variety of extensions of our basic framework in more familiar theories. We apply this to show, for a range of such semantically motivated extensions, that their consistency strength is at most slightly above that of the base theory $\mathsf {ZF}$, and thus not seriously limiting to the diversity of the set-theoretic multiverse. We end with case studies applying the framework to two multiverse conceptions of set theory: arithmetic absoluteness and Joel D. Hamkins’ multiverse theory.
We use the model theoretic notion of coheir to give short proofs of old and new theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among their consequences partition theorems due to Carlson and to Gowers.
We continue the research of the relation
$\hspace {1mm}\widetilde {\mid }\hspace {1mm}$
on the set
$\beta \mathbb {N}$
of ultrafilters on
$\mathbb {N}$
, defined as an extension of the divisibility relation. It is a quasiorder, so we see it as an order on the set of
$=_{\sim }$
-equivalence classes, where
$\mathcal {F}=_{\sim }\mathcal {G}$
means that
$\mathcal {F}$
and
$\mathcal {G}$
are mutually
$\hspace {1mm}\widetilde {\mid }$
-divisible. Here we introduce a new tool: a relation of congruence modulo an ultrafilter. We first recall the congruence of ultrafilters modulo an integer and show that
$=_{\sim }$
-equivalent ultrafilters do not necessarily have the same residue modulo
$m\in \mathbb {N}$
. Then we generalize this relation to congruence modulo an ultrafilter in a natural way. After that, using iterated nonstandard extensions, we introduce a stronger relation, which has nicer properties with respect to addition and multiplication of ultrafilters. Finally, we introduce a strengthening of
$\hspace {1mm}\widetilde {\mid }\hspace {1mm}$
and show that it also behaves well with respect to the congruence relation.
We introduce the
$\Sigma _1$
-definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, (i) the sequence is
$\Sigma _1$
-definable and provably finite; (ii) the sequence is empty in transitive models; and (iii) if M is a countable model of set theory in which the sequence is s and t is any finite extension of s in this model, then there is an end-extension of M to a model in which the sequence is t. Our proof method grows out of a new infinitary-logic-free proof of the Barwise extension theorem, by which any countable model of set theory is end-extended to a model of
$V=L$
or indeed any theory true in a suitable submodel of the original model. The main theorem settles the modal logic of end-extensional potentialism, showing that the potentialist validities of the models of set theory under end-extensions are exactly the assertions of S4. Finally, we introduce the end-extensional maximality principle, which asserts that every possibly necessary sentence is already true, and show that every countable model extends to a model satisfying it.
We introduce a tool for analysing models of
$\text {CT}^-$
, the compositional truth theory over Peano Arithmetic. We present a new proof of Lachlan’s theorem that the arithmetical part of models of
$\text {CT}^-$
are recursively saturated. We also use this tool to provide a new proof of theorem from [8] that all models of
$\text {CT}^-$
carry a partial inductive truth predicate. Finally, we construct a partial truth predicate defined for a set of formulae whose syntactic depth forms a nonstandard cut which cannot be extended to a full truth predicate satisfying
$\text {CT}^-$
.
We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrödinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space
$\mathbb {R}^3$
, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighborhood of the origin.