To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assuming the abc-conjecture, it is shown that there are only finitely many powerful binomial coefficients with 3≤k≤n/2 in fact, if q2 divides , then . Unconditionally, it is shown that there are N1/2+σ(1) powerful binomial coefficients in the top N rows of Pascal's Triangle.
We investigate conditions which ensure that systems of binomial polynomials with integer coefficients are simultaneously free of large prime factors. In particular, for each positive number ε, we show that there are infinitely many strings of consecutive integers of size about n, free of prime factors exceeding nε, with the length of the strings tending to infinity with speed log log log log n.
Crittenden and Vanden Eynden conjectured that if n arithmetic progressions, each having modulus at least k, include all the integers from 1 to k2n-k+1, then they include all the integers. They proved this for the cases k = 1 and k = 2. We give various necessary conditions for a counterexample to the conjecture; in particular we show that if a counterexample exists for some value of k, then one exists for that k and a value of n less than an explicit function of k.
Call a set of natural numbers subset-sum-distinct (or SSD) if all pairwise distinct subsets have unequal sums. One wants to construct SSD sets in which the largest element is as small as possible. Given any SSD set, it is easy to construct an SSD set with one more element in which the biggest element is exactly double the biggest element in the original set. For any SSD set, we construct another SSD set with k more elements whose largest element is less than 2k times the largest element in the original set. This claim has been made previously for a different construction, but we show that that claim is false.
The distribution of squarefree binomial coefficients. For many years, Paul Erdős has asked intriguing questions concerning the prime divisors of binomial coefficients, and the powers to which they appear. It is evident that, if k is not too small, then must be highly composite in that it contains many prime factors and often to high powers. It is therefore of interest to enquire as to how infrequently is squarefree. One well-known conjecture, due to Erdős, is that is not squarefree once n > 4. Sarközy [Sz] proved this for sufficiently large n but here we return to and solve the original question.
In this note we introduce recurring-with-carry sequences which generalize add-with-carry and subtract-with-borrow sequences introduced in [1], and describe periods of admissible recurring-with-carry sequences which include add-with-carry and subtract-with-borrow sequences with a few exceptions.
This article studies particular sequences satisfying polynomial recurrences, among those Apéry's sequence which is shown to be the Legendre transform of the sequence. This results in the construction of simultaneous approximations of π 2/8 and ζ(3).
We consider the Egyptian fraction equation and discuss techniques for generating solutions. By examining a quadratic recurrence relation modulo a family of primes we have found some 500 new infinite sequences of solutions. We also initiate an investigation of the randomness of the distribution of solutions, and show that there are infinitely many solutions not generated by the aforementioned technique.
We prove a result related to the Erdős-Ginzburg-Ziv theorem: Let p and q be primes, α a positive integer, and m∈{pα, pαq}. Then for any sequence of integers c= {c1, c2,…, cn} there are at least
subsequences of length m, whose terms add up to 0 modulo m (Theorem 8). We also show why it is unlikely that the result is true for any m not of the form pα or pαq (Theorem 9).
Three differently defined classes of two-symbol sequences, which we call the two-distance sequences, the linear sequences and the characteristic sequences, have been discussed by a number of authors and some equivalences between them are known. We present a self-contained proof that the three classes are the same (when ambiguous cases of linear sequences are suitably in terpreted). Associated with each sequence is a real invariant (having a different appropriate definition for each of the three classes). We give results on the relation between sequences with the same invariant and on the symmetry of the sequences. The sequences are closely related to Beatty sequences and occur as digitized straight lines and quasicrystals. They also provide examples of minimal word proliferation in formal languages.
§1. Introduction. In 1985, Sárkõzy [11] proved a conjecture of Erdõs [2] by showing that the greatest square factor s(n)2 of the “middle” binomial coefficient satisfies for arbitrary ε > 0 and sufficiently large n
Let L be a linear differential operator with rational coefficients such that 0 is not an irregular singularity of L and that for sufficiently many p's the equation Lv = 0 has no zero solution mod p. We show that if u is a formal power series whose coefficients are p-adic integers for almost all p and if Lu is rational, then u too is rational.