To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we present a new family of identities for multiple harmonic sums which generalize a recent result of Hessami Pilehrood et al [Trans. Amer. Math. Soc. (to appear)]. We then apply it to obtain a family of identities relating multiple zeta star values to alternating Euler sums. In such a typical identity the entries of the multiple zeta star values consist of blocks of arbitrarily long 2-strings separated by positive integers greater than two while the largest depth of the alternating Euler sums depends only on the number of 2-string blocks but not on their lengths.
We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$-valued $k$-regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$-regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions.
The cubic version of the Lucas cryptosystem is set up based on the cubic recurrence relation of the Lucas function by Said and Loxton [‘A cubic analogue of the RSA cryptosystem’, Bull. Aust. Math. Soc.68 (2003), 21–38]. To implement this type of cryptosystem in a limited environment, it is necessary to accelerate encryption and decryption procedures. Therefore, this paper concentrates on improving the computation time of encryption and decryption in cubic Lucas cryptosystems. The new algorithm is designed based on new properties of the cubic Lucas function and mathematical techniques. To illustrate the efficiency of our algorithm, an analysis was carried out with different size parameters and the performance of the proposed and previously existing algorithms was evaluated with experimental data and mathematical analysis.
Let $Q(N;q,a)$ be the number of squares in the arithmetic progression $qn+a$, for $n=0$,$1,\ldots,N-1$, and let $Q(N)$ be the maximum of $Q(N;q,a)$ over all non-trivial arithmetic progressions $qn + a$. Rudin’s conjecture claims that $Q(N)=O(\sqrt{N})$, and in its stronger form that $Q(N)=Q(N;24,1)$ if $N\ge 6$. We prove the conjecture above for $6\le N\le 52$. We even prove that the arithmetic progression $24n+1$ is the only one, up to equivalence, that contains $Q(N)$ squares for the values of $N$ such that $Q(N)$ increases, for $7\le N\le 52$ ($N=8,13,16,23,27,36,41$and $52$).
Let $P$ and $Q$ be non-zero integers. The generalized Fibonacci sequence $\{ {U}_{n} \} $ and Lucas sequence $\{ {V}_{n} \} $ are defined by ${U}_{0} = 0$, ${U}_{1} = 1$ and ${U}_{n+ 1} = P{U}_{n} + Q{U}_{n- 1} $ for $n\geq 1$ and ${V}_{0} = 2, {V}_{1} = P$ and ${V}_{n+ 1} = P{V}_{n} + Q{V}_{n- 1} $ for $n\geq 1$, respectively. In this paper, we assume that $Q= 1$. Firstly, we determine indices $n$ such that ${V}_{n} = k{x}^{2} $ when $k\vert P$ and $P$ is odd. Then, when $P$ is odd, we show that there are no solutions of the equation ${V}_{n} = 3\square $ for $n\gt 2$. Moreover, we show that the equation ${V}_{n} = 6\square $ has no solution when $P$ is odd. Lastly, we consider the equations ${V}_{n} = 3{V}_{m} \square $ and ${V}_{n} = 6{V}_{m} \square $. It has been shown that the equation ${V}_{n} = 3{V}_{m} \square $ has a solution when $n= 3, m= 1$, and $P$ is odd. It has also been shown that the equation ${V}_{n} = 6{V}_{m} \square $ has a solution only when $n= 6$. We also solve the equations ${V}_{n} = 3\square $ and ${V}_{n} = 3{V}_{m} \square $ under some assumptions when $P$ is even.
We prove that ${ \mathbb{Z} }_{{p}^{n} } $ and ${ \mathbb{Z} }_{p} [t] / ({t}^{n} )$ are polynomially equivalent if and only if $n\leq 2$ or ${p}^{n} = 8$. For the proof, employing Bernoulli numbers, we explicitly provide the polynomials which compute the carry-on part for the addition and multiplication in base $p$. As a corollary, we characterize finite rings of ${p}^{2} $ elements up to polynomial equivalence.
We study the mixing properties of progressions $(x, xg, x{g}^{2} )$, $(x, xg, x{g}^{2} , x{g}^{3} )$ of length three and four in a model class of finite nonabelian groups, namely the special linear groups ${\mathrm{SL} }_{d} (F)$ over a finite field $F$, with $d$ bounded. For length three progressions $(x, xg, x{g}^{2} )$, we establish a strong mixing property (with an error term that decays polynomially in the order $\vert F\vert $ of $F$), which among other things counts the number of such progressions in any given dense subset $A$ of ${\mathrm{SL} }_{d} (F)$, answering a question of Gowers for this class of groups. For length four progressions $(x, xg, x{g}^{2} , x{g}^{3} )$, we establish a partial result in the $d= 2$ case if the shift $g$ is restricted to be diagonalizable over $F$, although in this case we do not recover polynomial bounds in the error term. Our methods include the use of the Cauchy–Schwarz inequality, the abelian Fourier transform, the Lang–Weil bound for the number of points in an algebraic variety over a finite field, some algebraic geometry, and (in the case of length four progressions) the multidimensional Szemerédi theorem.
We obtain a removal lemma for systems of linear equations over the circle group, using a similar result for finite fields due to Král′, Serra and Vena, and we discuss some applications.
For a given integer $n$ and a set $ \mathcal{S} \subseteq \mathbb{N} $, denote by ${ R}_{h, \mathcal{S} }^{(1)} (n)$ the number of solutions of the equation $n= {s}_{{i}_{1} } + \cdots + {s}_{{i}_{h} } $, ${s}_{{i}_{j} } \in \mathcal{S} $, $j= 1, \ldots , h$. In this paper we determine all pairs $( \mathcal{A} , \mathcal{B} )$, $ \mathcal{A} , \mathcal{B} \subseteq \mathbb{N} $, for which ${ R}_{3, \mathcal{A} }^{(1)} (n)= { R}_{3, \mathcal{B} }^{(1)} (n)$ from a certain point on. We discuss some related problems.
In this paper, we prove that, if $N$ is a positive odd number with $r$ distinct prime factors such that $N\mid \sigma (N)$, then $N\lt {2}^{{4}^{r} - {2}^{r} } $ and $N{\mathop{\prod }\nolimits}_{p\mid N} p\lt {2}^{{4}^{r} } $, where $\sigma (N)$ is the sum of all positive divisors of $N$. In particular, these bounds hold if $N$ is an odd perfect number.
Let $L(s, E)= {\mathop{\sum }\nolimits}_{n\geq 1} {a}_{n} {n}^{- s} $ be the $L$-series corresponding to an elliptic curve $E$ defined over $ \mathbb{Q} $ and $\mathbf{u} = \mathop{\{ {u}_{m} \} }\nolimits_{m\geq 0} $ be a nondegenerate binary recurrence sequence. We prove that if ${ \mathcal{M} }_{E} $ is the set of $n$ such that ${a}_{n} \not = 0$ and ${ \mathcal{N} }_{E} $ is the subset of $n\in { \mathcal{M} }_{E} $ such that $\vert {a}_{n} \vert = \vert {u}_{m} \vert $ holds with some integer $m\geq 0$, then ${ \mathcal{N} }_{E} $ is of density $0$ as a subset of ${ \mathcal{M} }_{E} $.
Recently, Pollack and Shevelev [‘On perfect and near-perfect numbers’, J. Number Theory132 (2012), 3037–3046] introduced the concept of near-perfect numbers. A positive integer $n$ is called near-perfect if it is the sum of all but one of its proper divisors. In this paper, we determine all near-perfect numbers with two distinct prime factors.
Let $p$ be a prime. In this paper, we present a detailed $p$-adic analysis on factorials and double factorials and their congruences. We give good bounds for the $p$-adic sizes of the coefficients of the divided universal Bernoulli number ${B}_{n} / n$ when $n$ is divisible by $p- 1$. Using these, we then establish the universal Kummer congruences modulo powers of a prime $p$ for the divided universal Bernoulli numbers ${B}_{n} / n$ when $n$ is divisible by $p- 1$.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
We prove that for each positive integer k in the range 2≤k≤10 and for each positive integer k≡79 (mod 120) there is a k-step Fibonacci-like sequence of composite numbers and give some examples of such sequences. This is a natural extension of a result of Graham for the Fibonacci-like sequence.
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s $q$-sequence’, J. Integer Seq.10 (2007)], we analyze a variant of Hofstadter’s $Q$-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.
A number is squareful if the exponent of every prime in its prime factorization is at least two. In this paper, we give, for a fixed $l$, the number of pairs of squareful numbers $n$, $n+l$ such that $n$is less than a given quantity.