We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain a removal lemma for systems of linear equations over the circle group, using a similar result for finite fields due to Král′, Serra and Vena, and we discuss some applications.
For a given integer $n$ and a set $ \mathcal{S} \subseteq \mathbb{N} $, denote by ${ R}_{h, \mathcal{S} }^{(1)} (n)$ the number of solutions of the equation $n= {s}_{{i}_{1} } + \cdots + {s}_{{i}_{h} } $, ${s}_{{i}_{j} } \in \mathcal{S} $, $j= 1, \ldots , h$. In this paper we determine all pairs $( \mathcal{A} , \mathcal{B} )$, $ \mathcal{A} , \mathcal{B} \subseteq \mathbb{N} $, for which ${ R}_{3, \mathcal{A} }^{(1)} (n)= { R}_{3, \mathcal{B} }^{(1)} (n)$ from a certain point on. We discuss some related problems.
In this paper, we prove that, if $N$ is a positive odd number with $r$ distinct prime factors such that $N\mid \sigma (N)$, then $N\lt {2}^{{4}^{r} - {2}^{r} } $ and $N{\mathop{\prod }\nolimits}_{p\mid N} p\lt {2}^{{4}^{r} } $, where $\sigma (N)$ is the sum of all positive divisors of $N$. In particular, these bounds hold if $N$ is an odd perfect number.
Let $L(s, E)= {\mathop{\sum }\nolimits}_{n\geq 1} {a}_{n} {n}^{- s} $ be the $L$-series corresponding to an elliptic curve $E$ defined over $ \mathbb{Q} $ and $\mathbf{u} = \mathop{\{ {u}_{m} \} }\nolimits_{m\geq 0} $ be a nondegenerate binary recurrence sequence. We prove that if ${ \mathcal{M} }_{E} $ is the set of $n$ such that ${a}_{n} \not = 0$ and ${ \mathcal{N} }_{E} $ is the subset of $n\in { \mathcal{M} }_{E} $ such that $\vert {a}_{n} \vert = \vert {u}_{m} \vert $ holds with some integer $m\geq 0$, then ${ \mathcal{N} }_{E} $ is of density $0$ as a subset of ${ \mathcal{M} }_{E} $.
Recently, Pollack and Shevelev [‘On perfect and near-perfect numbers’, J. Number Theory132 (2012), 3037–3046] introduced the concept of near-perfect numbers. A positive integer $n$ is called near-perfect if it is the sum of all but one of its proper divisors. In this paper, we determine all near-perfect numbers with two distinct prime factors.
Let $p$ be a prime. In this paper, we present a detailed $p$-adic analysis on factorials and double factorials and their congruences. We give good bounds for the $p$-adic sizes of the coefficients of the divided universal Bernoulli number ${B}_{n} / n$ when $n$ is divisible by $p- 1$. Using these, we then establish the universal Kummer congruences modulo powers of a prime $p$ for the divided universal Bernoulli numbers ${B}_{n} / n$ when $n$ is divisible by $p- 1$.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
We prove that for each positive integer k in the range 2≤k≤10 and for each positive integer k≡79 (mod 120) there is a k-step Fibonacci-like sequence of composite numbers and give some examples of such sequences. This is a natural extension of a result of Graham for the Fibonacci-like sequence.
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s $q$-sequence’, J. Integer Seq.10 (2007)], we analyze a variant of Hofstadter’s $Q$-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.
A number is squareful if the exponent of every prime in its prime factorization is at least two. In this paper, we give, for a fixed $l$, the number of pairs of squareful numbers $n$, $n+l$ such that $n$is less than a given quantity.
Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k{(n+i)2+1}.
Let K be a number field. For f∈K[x], we give an upper bound on the least positive integer T=T(f) such that no quotient of two distinct Tth powers of roots of f is a root of unity. For each ε>0 and each f∈ℚ[x] of degree d≥d(ε) we prove that . In the opposite direction, we show that the constant 2cannot be replaced by a number smaller than 1 . These estimates are useful in the study of degenerate and nondegenerate linear recurrence sequences over a number field K.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0in K[x]and the integer m≥2is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x)with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
We give upper and lower bounds on the count of positive integers n ≤ x dividing the nth term of a non-degenerate linearly recurrent sequence with simple roots.
In this paper we present new explicit simultaneous rational approximations which converge subexponentially to the values of the Bell polynomials at the points where m=1,2,…,a, a∈ℕ, γ is Euler’s constant and ζ is the Riemann zeta function.
In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field has only finitely many terms lacking a primitive divisor.
We prove that the sequence {log ζ(n)}n≥2 is not holonomic, that is, does not satisfy a finite recurrence relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli numbers.
For a primitive root g modulo a prime p≥1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn, n=1,…,N, which is uniform over all integers a with gcd (a,p)=1.