We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove the following result: there exists an infinite arithmetic progression of positive odd numbers such that for any term k of the sequence and any nonnegative integer n, each of the 16 integers k−2n, k−2−2n, k−4−2n, k−6−2n, k−8−2n, k−10−2n, k−12−2n, k−14−2n, k2n−1, (k−2)2n−1, (k−4)2n−1, (k−6)2n−1, (k−8)2n−1, (k−10)2n−1, (k−12)2n−1 and (k−14)2n−1 has at least two distinct odd prime factors; in particular, for each term k, none of the eight integers k, k−2, k−4, k−6, k−8, k−10, k−12 or k−14 can be expressed as a sum of two prime powers.
Let P(k) be the largest prime factor of the positive integer k. In this paper, we prove that the series is convergent for each constant α<1/2, which gives a more precise form of a result of C. L. Stewart [‘On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers’, Proc. London Math. Soc.35(3) (1977), 425–447].
Suppose that G is an abelian group and that A ⊂ G is finite and contains no non-trivial three-term arithmetic progressions. We show that |A+A| »ε|A|(log|A|)⅓−ε.
Let $p$ be a prime, and let $f:\mathbb{Z}/p\mathbb{Z}\to \mathbb{R}$ be a function with $\mathbb{E}f=0$ and $||\hat{f}|{{|}_{1}}\le 1$. Then ${{\min }_{x\in \mathbb{Z}/p\mathbb{Z}}}|f\left( x \right)|=O{{\left( \log p \right)}^{-1/3+\in }}$. One should think of $f$ as being “approximately continuous”; our result is then an “approximate intermediate value theorem”.
As an immediate consequence we show that if $A\subseteq \mathbb{Z}/p\mathbb{Z}$ is a set of cardinality $\left\lfloor {p}/{2}\; \right\rfloor $, then ${{\sum }_{r}}\widehat{|\,{{1}_{A}}}\left( r \right)|\gg {{\left( \log p \right)}^{1/3-\in }}$. This gives a result on a “$\,\bmod \,p$” analogue of Littlewood's well-known problem concerning the smallest possible ${{L}^{1}}$-norm of the Fourier transform of a set of $n$ integers.
Another application is to answer a question of Gowers. If $A\,\subseteq \,{\mathbb{Z}}/{p\mathbb{Z}}\;$ is a set of size $\left\lfloor {p}/{2}\; \right\rfloor $, then there is some $x\,\in \,\mathbb{Z}/p\mathbb{Z}$ such that
$$||A\cap \left( A+x \right)\,-\,p/4|\,=o\left( p \right).$$
We prove quantitative versions of the Balog–Szemerédi–Gowers and Freiman theorems in the model case of a finite field geometry 𝔽2n, improving the previously known bounds in such theorems. For instance, if is such that ∣A+A∣≤K∣A∣ (thus A has small additive doubling), we show that there exists an affine subspace H of 𝔽2n of cardinality such that . Under the assumption that A contains at least ∣A∣3/K quadruples with a1+a2+a3+a4=0, we obtain a similar result, albeit with the slightly weaker condition ∣H∣≫K−O(K)∣A∣.
Erdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.
We study sums involving multiplicative functions that take values over a nonhomogenous Beatty sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to a given magnitude.
Let σA(n)=∣{(a,a′)∈A2:a+a′=n}∣, where and A is a subset of . Erdös and Turán conjectured that, for any basis A of , σA(n) is unbounded. In 1990, Ruzsa constructed a basis for which σA(n) is bounded in the square mean. In this paper, based on Ruzsa’s method, we show that there exists a basis A of satisfying for large enough N.
In this paper, an improvement of a large sieve type inequality in high dimensions is presented, and its implications on a related problem are discussed.
Let A⊆ℕ, let p be a prime and w a word over ℤ pℤ ending with a non-zero digit. The relationship is investigated between the density of A. the length of w and the density of the set of numbers n for which the base p expansion of ends with w0n for some a ∈ A. Also considered is the analogous problem on Pascal's triangle. This leads in particular to answering a question of Granville and Zhu [7] regarding the asymptotic frequency of sums of 3 squares in Pascal's triangle.
An original linear algebraic approach to the basic notion of Freiman's isomorphism is developed and used in conjunction with a combinatorial argument to answer two questions, posed by Freiman about 35 years ago.
First, the order of growth is established of t(n), the number of classes isomorphic n-element sets of integers: t(n) = n(2 + σ(1))n. Second, it is proved linear Roth sets (sets of integers free of arithmetic progressions and having Freiman rank 1) exist and, moreover, the number of classes of such cardinality n is amazingly large; in fact, it is “the same as above”: .
Assuming the abc-conjecture, it is shown that there are only finitely many powerful binomial coefficients with 3≤k≤n/2 in fact, if q2 divides , then . Unconditionally, it is shown that there are N1/2+σ(1) powerful binomial coefficients in the top N rows of Pascal's Triangle.
We investigate conditions which ensure that systems of binomial polynomials with integer coefficients are simultaneously free of large prime factors. In particular, for each positive number ε, we show that there are infinitely many strings of consecutive integers of size about n, free of prime factors exceeding nε, with the length of the strings tending to infinity with speed log log log log n.
Crittenden and Vanden Eynden conjectured that if n arithmetic progressions, each having modulus at least k, include all the integers from 1 to k2n-k+1, then they include all the integers. They proved this for the cases k = 1 and k = 2. We give various necessary conditions for a counterexample to the conjecture; in particular we show that if a counterexample exists for some value of k, then one exists for that k and a value of n less than an explicit function of k.
Call a set of natural numbers subset-sum-distinct (or SSD) if all pairwise distinct subsets have unequal sums. One wants to construct SSD sets in which the largest element is as small as possible. Given any SSD set, it is easy to construct an SSD set with one more element in which the biggest element is exactly double the biggest element in the original set. For any SSD set, we construct another SSD set with k more elements whose largest element is less than 2k times the largest element in the original set. This claim has been made previously for a different construction, but we show that that claim is false.
The distribution of squarefree binomial coefficients. For many years, Paul Erdős has asked intriguing questions concerning the prime divisors of binomial coefficients, and the powers to which they appear. It is evident that, if k is not too small, then must be highly composite in that it contains many prime factors and often to high powers. It is therefore of interest to enquire as to how infrequently is squarefree. One well-known conjecture, due to Erdős, is that is not squarefree once n > 4. Sarközy [Sz] proved this for sufficiently large n but here we return to and solve the original question.