To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbb{N}$ be the set of all nonnegative integers. For a given set $S\subset \mathbb{N}$ the representation function $R_{S}(n)$ counts the number of solutions of the equation $n=s+s^{\prime }$ with $s<s^{\prime }$ and $s,s^{\prime }\in S$. We obtain some results on a problem of Chen and Lev [‘Integer sets with identical representation functions’, Integers16 (2016), Article ID A36, 4 pages] about sets $A$ and $B$ such that $A\cup B=\mathbb{N}$, $A\cap B=r+m\mathbb{N}$ and whose representation functions coincide.
Let [An,k]n,k⩾0 be an infinite lower triangular array satisfying the recurrence
for n ⩾ 1 and k ⩾ 0, where A0,0 = 1, A0,k = Ak,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.
We construct and study a certain zeta function which interpolates multi-poly-Bernoulli numbers at nonpositive integers and whose values at positive integers are linear combinations of multiple zeta values. This function can be regarded as the one to be paired up with the $\unicode[STIX]{x1D709}$-function defined by Arakawa and Kaneko. We show that both are closely related to the multiple zeta functions. Further we define multi-indexed poly-Bernoulli numbers, and generalize the duality formulas for poly-Bernoulli numbers by introducing more general zeta functions.
For any finite abelian group $G$ with $|G|=m$, $A\subseteq G$ and $g\in G$, let $R_{A}(g)$ be the number of solutions of the equation $g=a+b$, $a,b\in A$. Recently, Sándor and Yang [‘A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture’, Preprint, 2016, arXiv:1612.08722v1] proved that, if $m\geq 36$ and $R_{A}(n)\geq 1$ for all $n\in \mathbb{Z}_{m}$, then there exists $n\in \mathbb{Z}_{m}$ such that $R_{A}(n)\geq 6$. In this paper, for any finite abelian group $G$ with $|G|=m$ and $A\subseteq G$, we prove that (a) if the number of $g\in G$ with $R_{A}(g)=0$ does not exceed $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$, then there exists $g\in G$ such that $R_{A}(g)\geq 6$; (b) if $1\leq R_{A}(g)\leq 6$ for all $g\in G$, then the number of $g\in G$ with $R_{A}(g)=6$ is more than $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$.
In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.
We investigate the monotonic characteristics of the generalised binomial coefficients (phinomials) based upon Euler’s totient function. We show, unconditionally, that the set of integers for which this sequence is unimodal is finite and, assuming the generalised Riemann hypothesis, we find all the exceptions.
The quotient set of $A\subseteq \mathbb{N}$ is defined as $R(A):=\{a/b:a,b\in A,b\neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [‘Quotients of Fibonacci numbers’, Amer. Math. Monthly, to appear] proved that the quotient set of Fibonacci numbers is dense in the $p$-adic numbers $\mathbb{Q}_{p}$ for all prime numbers $p$. For any integer $k\geq 2$, let $(F_{n}^{(k)})_{n\geq -(k-2)}$ be the sequence of $k$-generalised Fibonacci numbers, defined by the initial values $0,0,\ldots ,0,1$ ($k$ terms) and such that each successive term is the sum of the $k$ preceding terms. We use $p$-adic analysis to generalise the result of Garcia and Luca, by proving that the quotient set of $k$-generalised Fibonacci numbers is dense in $\mathbb{Q}_{p}$ for any integer $k\geq 2$ and any prime number $p$.
Let $S=\{q_{1},\ldots ,q_{s}\}$ be a finite, non-empty set of distinct prime numbers. For a non-zero integer $m$, write $m=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}M$, where $r_{1},\ldots ,r_{s}$ are non-negative integers and $M$ is an integer relatively prime to $q_{1}\cdots q_{s}$. We define the $S$-part $[m]_{S}$ of $m$ by $[m]_{S}:=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}$. Let $(u_{n})_{n\geqslant 0}$ be a linear recurrence sequence of integers. Under certain necessary conditions, we establish that for every $\unicode[STIX]{x1D700}>0$, there exists an integer $n_{0}$ such that $[u_{n}]_{S}\leqslant |u_{n}|^{\unicode[STIX]{x1D700}}$ holds for $n>n_{0}$. Our proof is ineffective in the sense that it does not give an explicit value for $n_{0}$. Under various assumptions on $(u_{n})_{n\geqslant 0}$, we also give effective, but weaker, upper bounds for $[u_{n}]_{S}$ of the form $|u_{n}|^{1-c}$, where $c$ is positive and depends only on $(u_{n})_{n\geqslant 0}$ and $S$.
Define $r_{4}(N)$ to be the largest cardinality of a set $A\subset \{1,\ldots ,N\}$ that does not contain four elements in arithmetic progression. In 1998, Gowers proved that
We improve a recent result of B. Hanson [Estimates for character sums with various convolutions. Preprint, 2015, arXiv:1509.04354] on multiplicative character sums with expressions of the type $a+b+cd$ and variables $a,b,c,d$ from four distinct sets of a finite field. We also consider similar sums with $a+b(c+d)$. Our new bounds rely on some recent advances in additive combinatorics.
The aim of this paper is to develop analytic techniques to deal with the monotonicity of certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the log-behaviour of the functions
is considered, where ζ(x) and Γ(x) are the Riemann zeta function and the Euler Gamma function, respectively. Consequently, the strict log-concavities of the function θ(x) (a conjecture of Chen et al.) and for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the Catalan numbers, the Fuss–Catalan numbers, and the binomial coefficients are demonstrated. In particular, this contains some results of Chen et al., and Luca and Stănică. Finally, by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity of the sequence
is proved. This generalizes two results of Chen et al. that both the Catalan numbers and the central binomial coefficients are infinitely log-monotonic, and strengthens one result of Su and Wang that is log-convex in n for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity of derangement numbers is showed. In order to research the stronger properties of the above functions θ(x) and F(x), the logarithmically complete monotonicity of functions
is also obtained, which generalizes the results of Lee and Tepedelenlioǧlu, and Qi and Li.
Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen–von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.
Let $A$ be a subset of $\mathbb{N}$, the set of all nonnegative integers. For an integer $h\geq 2$, let $hA$ be the set of all sums of $h$ elements of $A$. The set $A$ is called an asymptotic basis of order $h$ if $hA$ contains all sufficiently large integers. Otherwise, $A$ is called an asymptotic nonbasis of order $h$. An asymptotic nonbasis $A$ of order $h$ is called a maximal asymptotic nonbasis of order $h$ if $A\cup \{a\}$ is an asymptotic basis of order $h$ for every $a\notin A$. In this paper, we construct a sequence of asymptotic nonbases of order $h$ for each $h\geq 2$, each of which is not a subset of a maximal asymptotic nonbasis of order $h$.
Diophantine problems involving recurrence sequences have a long history. We consider the equation $B_{m}B_{m+d}\cdots B_{m+(k-1)d}=y^{\ell }$ in positive integers $m,d,k,y$ with $\gcd (m,d)=1$ and $k\geq 2$, where $\ell \geq 2$ is a fixed integer and $B=(B_{n})_{n=1}^{\infty }$ is an elliptic divisibility sequence, an important class of nonlinear recurrences. We prove that the equation admits only finitely many solutions. In fact, we present an algorithm to find all possible solutions, provided that the set of $\ell$th powers in $B$ is given. We illustrate our method by an example.
We improve recent results of Bourgain and Shparlinski to show that, for almost all primes $p$, there is a multiple $mp$ that can be written in binary as
with $k=6$ (corresponding to Hamming weight seven). We also prove that there are infinitely many primes $p$ with a multiplicative subgroup $A=\langle g\rangle \subset \mathbb{F}_{p}^{\ast }$, for some $g\in \{2,3,5\}$, of size $|A|\gg p/(\log p)^{3}$, where the sum–product set $A\cdot A+A\cdot A$ does not cover $\mathbb{F}_{p}$ completely.
Consider a translation-invariant system of linear equations Vx = 0 of complexity one, where V is an integer r × t matrix. We show that if A is a subset of the primes up to N of density at least C(log logN)–1/25t, there exists a solution x ∈ At to Vx = 0 with distinct coordinates. This extends a quantitative result of Helfgott and de Roton for three-term arithmetic progressions, while the qualitative result is known to hold for all translation-invariant systems of finite complexity by the work of Green and Tao.
Let $P\in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and degree $(P)\geq 1$. Nicolas et al. [‘On the parity of additive representation functions’, J. Number Theory73 (1998), 292–317] proved that there exists a unique subset ${\mathcal{A}}={\mathcal{A}}(P)$ of $\mathbb{N}$ such that $\sum _{n\geq 0}p({\mathcal{A}},n)z^{n}\equiv P(z)~\text{mod}\,2$, where $p({\mathcal{A}},n)$ is the number of partitions of $n$ with parts in ${\mathcal{A}}$. Let $m$ be an odd positive integer and let ${\it\chi}({\mathcal{A}},.)$ be the characteristic function of the set ${\mathcal{A}}$. Finding the elements of the set ${\mathcal{A}}$ of the form $2^{k}m$, $k\geq 0$, is closely related to the $2$-adic integer $S({\mathcal{A}},m)={\it\chi}({\mathcal{A}},m)+2{\it\chi}({\mathcal{A}},2m)+4{\it\chi}({\mathcal{A}},4m)+\cdots =\sum _{k=0}^{\infty }2^{k}{\it\chi}({\mathcal{A}},2^{k}m)$, which has been shown to be an algebraic number. Let $G_{m}$ be the minimal polynomial of $S({\mathcal{A}},m)$. In precedent works there were treated the case $P$ irreducible of odd prime order $p$. In this setting, taking $p=1+ef$, where $f$ is the order of $2$ modulo $p$, explicit determinations of the coefficients of $G_{m}$ have been made for $e=2$ and 3. In this paper, we treat the case $e=4$ and use the cyclotomic numbers to make explicit $G_{m}$.
where $c>0$ is some absolute constant. In view of Behrend’s construction, this bound is of the right shape: the exponent $1/7$ cannot be replaced by any constant larger than $1/2$. We also establish a related result, which says that sumsets $A+A+A$ contain long arithmetic progressions if $A\subset \{1,\ldots ,N\}$, or high-dimensional affine subspaces if $A\subset \mathbb{F}_{q}^{n}$, even if $A$ has density of the shape above.