We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Qi and Chapman [‘Two closed forms for the Bernoulli polynomials’, J. Number Theory159 (2016), 89–100] gave a closed form expression for the Bernoulli polynomials as polynomials with coefficients involving Stirling numbers of the second kind. We extend the formula to the degenerate Bernoulli polynomials, replacing the Stirling numbers by degenerate Stirling numbers of the second kind.
We prove irregularities in the distribution of prime numbers in any Beatty sequence ${\mathcal{B}}(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$, where $\unicode[STIX]{x1D6FC}$ is a positive real irrational number of finite type.
We construct an $S_{3}$-symmetric probability distribution on $\{(a,b,c)\in \mathbb{Z}_{{\geqslant}0}^{3}\,:\,a+b+c=n\}$ such that its marginal achieves the maximum entropy among all probability distributions on $\{0,1,\ldots ,n\}$ with mean $n/3$. Existence of such a distribution verifies a conjecture of Kleinberg et al. [‘The growth rate of tri-colored sum-free sets’, Discrete Anal. (2018), Paper No. 12, arXiv:1607.00047v1], which is motivated by the study of sum-free sets.
Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given odd $n$. We prove a lower bound for $P(n)$ by counting certain partitions. We then estimate the size of these partitions via the multiplicative order of two modulo $n$.
We show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)$ and size at least $\exp ( - {O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K))|A|$. This partially generalises the close-to-optimal bounds obtained in the abelian case by Sanders, and improves the bounds and simplifies the exposition of an earlier result of the author. Combined with results of Breuillard–Green, Breuillard–Green–Tao, Gill–Helfgott–Pyber–Szabó, and the author, this leads to improved rank bounds in Freiman-type theorems in residually nilpotent groups and certain linear groups of bounded degree.
We establish the limiting distribution of certain subsets of Farey sequences, i.e., sequences of primitive rational points, on expanding horospheres in covers $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ of $\text{SL}(n+1,\mathbb{Z})\backslash \text{SL}(n+1,\mathbb{R})$, where $\unicode[STIX]{x1D6E5}$ is a finite-index subgroup of $\text{SL}(n+1,\mathbb{Z})$. These subsets can be obtained by projecting to the hyperplane $\{(x_{1},\ldots ,x_{n+1})\in \mathbb{R}^{n+1}:x_{n+1}=1\}$ sets of the form $\mathbf{A}=\bigcup _{j=1}^{J}\mathbf{a}_{j}\unicode[STIX]{x1D6E5}$, where for all $j$, $\mathbf{a}_{j}$ is a primitive lattice point in $\mathbb{Z}^{n+1}$. Our method involves applying the equidistribution of expanding horospheres in quotients of $\text{SL}(n+1,\mathbb{R})$ developed by Marklof and Strömbergsson, and more precisely understanding how the full Farey sequence distributes in $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ when embedded on expanding horospheres as done in previous work by Marklof. For each of the Farey sequence subsets, we extend the statistical results by Marklof regarding the full multidimensional Farey sequences, and solutions by Athreya and Ghosh to Diophantine approximation problems of Erdős–Szüsz–Turán and Kesten. We also prove that Marklof’s result on the asymptotic distribution of Frobenius numbers holds for sets of primitive lattice points of the form $\mathbf{A}$.
For every integer $k\geq 2$ and every $A\subseteq \mathbb{N}$, we define the $k$-directions sets of $A$ as $D^{k}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{k}\}$ and $D^{\text{}\underline{k}}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{\text{}\underline{k}}\}$, where $\Vert \cdot \Vert$ is the Euclidean norm and $A^{\text{}\underline{k}}:=\{\boldsymbol{a}\in A^{k}:a_{i}\neq a_{j}\text{ for all }i\neq j\}$. Via an appropriate homeomorphism, $D^{k}(A)$ is a generalisation of the ratio set$R(A):=\{a/b:a,b\in A\}$. We study $D^{k}(A)$ and $D^{\text{}\underline{k}}(A)$ as subspaces of $S^{k-1}:=\{\boldsymbol{x}\in [0,1]^{k}:\Vert \boldsymbol{x}\Vert =1\}$. In particular, generalising a result of Bukor and Tóth, we provide a characterisation of the sets $X\subseteq S^{k-1}$ such that there exists $A\subseteq \mathbb{N}$ satisfying $D^{\text{}\underline{k}}(A)^{\prime }=X$, where $Y^{\prime }$ denotes the set of accumulation points of $Y$. Moreover, we provide a simple sufficient condition for $D^{k}(A)$ to be dense in $S^{k-1}$. We conclude with questions for further research.
Suppose $a^{2}(a^{2}+1)$ divides $b^{2}(b^{2}+1)$ with $b>a$. We improve a previous result and prove a gap principle, without any additional assumptions, namely $b\gg a(\log a)^{1/8}/(\log \log a)^{12}$. We also obtain $b\gg _{\unicode[STIX]{x1D716}}a^{15/14-\unicode[STIX]{x1D716}}$ under the abc conjecture.
We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.
Let $\mathcal {P}(\mathbf{N})$ be the power set of N. We say that a function $\mu ^\ast : \mathcal {P}(\mathbf{N}) \to \mathbf{R}$ is an upper density if, for all X, Y ⊆ N and h, k ∈ N+, the following hold: (f1) $\mu ^\ast (\mathbf{N}) = 1$; (f2) $\mu ^\ast (X) \le \mu ^\ast (Y)$ if X ⊆ Y; (f3) $\mu ^\ast (X \cup Y) \le \mu ^\ast (X) + \mu ^\ast (Y)$; (f4) $\mu ^\ast (k\cdot X) = ({1}/{k}) \mu ^\ast (X)$, where k · X : = {kx: x ∈ X}; and (f5) $\mu ^\ast (X + h) = \mu ^\ast (X)$. We show that the upper asymptotic, upper logarithmic, upper Banach, upper Buck, upper Pólya and upper analytic densities, together with all upper α-densities (with α a real parameter ≥ −1), are upper densities in the sense of our definition. Moreover, we establish the mutual independence of axioms (f1)–(f5), and we investigate various properties of upper densities (and related functions) under the assumption that (f2) is replaced by the weaker condition that $\mu ^\ast (X)\le 1$ for every X ⊆ N. Overall, this allows us to extend and generalize results so far independently derived for some of the classical upper densities mentioned above, thus introducing a certain amount of unification into the theory.
May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ4–o(1) but not O(δ4).
Let M(δ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ|G|2, then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” (x, y), (x + d, y), (x, y + d) ∈ A is at least (M(δ)–∊)|G|2. As a corollary via a recent result of Mandache, we conclude that M(δ) = δ4–o(1) and M(δ) = ω(δ4).
On the other hand, for 0 < δ < 1/2 and sufficiently large N, there exists A ⊆ [N]3 with |A| ≥ δN3 such that for every d ≠ 0, the number of corners (x, y, z), (x + d, y, z), (x, y + d, z), (x, y, z + d) ∈ A is at most δc log(1/δ)N3. A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3.
Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We explore some applications of Lerch’s result to permutation problems involving quadratic residues modulo $p$ and confirm some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766]. We also study permutations involving arbitrary $k$th power residues modulo $p$ and primitive roots modulo a power of $p$.
Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given $n$. We prove a new upper bound in the case where $n$ is a power of a prime $p\equiv 5\hspace{0.6em}({\rm mod}\hspace{0.2em}8)$ for which $2$ is a primitive root and the Pellian equation $x^{2}-py^{2}=-4$ has no solutions in odd integers $x$ and $y$.
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are ultimately periodic.
Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a polynomial $p(n)$ with at least one irrational coefficient (except for the constant one) and integer $m\geqslant 2$, the sequence $\lfloor p(n)\rfloor \hspace{0.2em}{\rm mod}\hspace{0.2em}m$ is never automatic.
We also prove that the conjecture is equivalent to the claim that the set of powers of an integer $k\geqslant 2$ is not given by a generalised polynomial.
Given a prime $p\geqslant 5$ and an integer $s\geqslant 1$, we show that there exists an integer $M$ such that for any quadratic polynomial $f$ with coefficients in the ring of integers modulo $p^{s}$, such that $f$ is not a square, if a sequence $(f(1),\ldots ,f(N))$ is a sequence of squares, then $N$ is at most $M$. We also provide some explicit formulas for the optimal $M$.
A celebrated result by Bourgain and Wierdl states that ergodic averages along primes converge almost everywhere for $L^{p}$-functions, $p>1$, with a polynomial version by Wierdl and Nair. Using an anti-correlation result for the von Mangoldt function due to Green and Tao, we observe everywhere convergence of such averages for nilsystems and continuous functions.
We study the average error term in the usual approximation to the number of y-friable integers congruent to a modulo q, where a ≠ 0 is a fixed integer. We show that in the range exp{(log log x)5/3+ɛ} ⩽ y ⩽ x and on average over q ⩽ x/M with M → ∞ of moderate size, this average error term is asymptotic to −|a| Ψ(x/|a|, y)/2x. Previous results of this sort were obtained by the second author for reasonably dense sequences, however the sequence of y-friable integers studied in the current paper is thin, and required the use of different techniques, which are specific to friable integers.