We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Green and Tao famously proved in 2005 that any subset of the primes of fixed positive density contains arbitrarily long arithmetic progressions. Green had previously shown that, in fact, any subset of the primes of relative density tending to zero sufficiently slowly contains a three-term progression. This was followed by work of Helfgott and de Roton, and Naslund, who improved the bounds on the relative density in the case of three-term progressions. The aim of this note is to present an analogous result for longer progressions by combining a quantified version of the relative Szemerédi theorem given by Conlon, Fox and Zhao with Henriot's estimates of the enveloping sieve weights.
Let $F$ be an integral linear recurrence, $G$ an integer-valued polynomial splitting over the rationals and $h$ a positive integer. Also, let ${\mathcal{A}}_{F,G,h}$ be the set of all natural numbers $n$ such that $\gcd (F(n),G(n))=h$. We prove that ${\mathcal{A}}_{F,G,h}$ has a natural density. Moreover, assuming that $F$ is nondegenerate and $G$ has no fixed divisors, we show that the density of ${\mathcal{A}}_{F,G,1}$ is 0 if and only if ${\mathcal{A}}_{F,G,1}$ is finite.
Let $G$ be a finite abelian group, $A$ a nonempty subset of $G$ and $h\geq 2$ an integer. For $g\in G$, let $R_{A,h}(g)$ denote the number of solutions of the equation $x_{1}+\cdots +x_{h}=g$ with $x_{i}\in A$ for $1\leq i\leq h$. Kiss et al. [‘Groups, partitions and representation functions’, Publ. Math. Debrecen85(3) (2014), 425–433] proved that (a) if $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for all $g\in G$, then $|G|=2|A|$, and (b) if $h$ is even and $|G|=2|A|$, then $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for all $g\in G$. We prove that $R_{G\setminus A,h}(g)-(-1)^{h}R_{A,h}(g)$ does not depend on $g$. In particular, if $h$ is even and $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for some $g\in G$, then $|G|=2|A|$. If $h>1$ is odd and $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for all $g\in G$, then $R_{A,h}(g)=\frac{1}{2}|A|^{h-1}$ for all $g\in G$. If $h>1$ is odd and $|G|$ is even, then there exists a subset $A$ of $G$ with $|A|=\frac{1}{2}|G|$ such that $R_{A,h}(g)\not =R_{G\setminus A,h}(g)$ for all $g\in G$.
We consider a family of nonlinear rational recurrences of odd order which was introduced by Heideman and Hogan, and recently rediscovered in the theory of Laurent phenomenon algebras (a generalization of cluster algebras). All of these recurrences have the Laurent property, implying that for a particular choice of initial data (all initial values set to 1) they generate an integer sequence. For these particular sequences, Heideman and Hogan gave a direct proof of integrality by showing that the terms of the sequence also satisfy a linear recurrence relation with constant coefficients. Here we present an analogous result for the general solution of each of these recurrences.
Let ${\mathcal{A}}=\{a_{1}<a_{2}<\cdots \,\}$ be a set of nonnegative integers. Put $D({\mathcal{A}})=\gcd \{a_{k+1}-a_{k}:k=1,2,\ldots \}$. The set ${\mathcal{A}}$ is an asymptotic basis if there exists $h$ such that every sufficiently large integer is a sum of at most $h$ (not necessarily distinct) elements of ${\mathcal{A}}$. We prove that if the difference of consecutive integers of ${\mathcal{A}}$ is bounded, then ${\mathcal{A}}$ is an asymptotic basis if and only if there exists an integer $a\in {\mathcal{A}}$ such that $(a,D({\mathcal{A}}))=1$.
We provide two new bounds on the number of visible points on exponential curves modulo a prime for all choices of primes. We also provide one new bound on the number of visible points on exponential curves modulo a prime for almost all primes.
An additive basis $A$ is finitely stable when the order of $A$ is equal to the order of $A\cup F$ for all finite subsets $F\subseteq \mathbb{N}$. We give a sufficient condition for an additive basis to be finitely stable. In particular, we prove that $\mathbb{N}^{2}$ is finitely stable.
Let $P_{1},\ldots ,P_{k}:\mathbb{Z}\rightarrow \mathbb{Z}$ be polynomials of degree at most $d$ for some $d\geqslant 1$, with the degree $d$ coefficients all distinct, and admissible in the sense that for every prime $p$, there exists integers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are all not divisible by $p$. We show that there exist infinitely many natural numbers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are simultaneously prime, generalizing a previous result of the authors, which was restricted to the special case $P_{1}(0)=\cdots =P_{k}(0)=0$ (though it allowed for the top degree coefficients to coincide). Furthermore, we obtain an asymptotic for the number of such prime pairs $n,m$ with $n\leqslant N$ and $m\leqslant M$ with $M$ slightly less than $N^{1/d}$. This asymptotic is already new in general in the homogeneous case $P_{1}(0)=\cdots =P_{k}(0)=0$. Our arguments rely on four ingredients. The first is a (slightly modified) generalized von Neumann theorem of the authors, reducing matters to controlling certain averaged local Gowers norms of (suitable normalizations of) the von Mangoldt function. The second is a more recent concatenation theorem of the authors, controlling these averaged local Gowers norms by global Gowers norms. The third ingredient is the work of Green and the authors on linear equations in primes, allowing one to compute these global Gowers norms for the normalized von Mangoldt functions. Finally, we use the Conlon–Fox–Zhao densification approach to the transference principle to combine the preceding three ingredients together. In the special case $P_{1}(0)=\cdots =P_{k}(0)=0$, our methods also give infinitely many $n,m$ with $n+P_{1}(m),\ldots ,n+P_{k}(m)$ in a specified set primes of positive relative density $\unicode[STIX]{x1D6FF}$, with $m$ bounded by $\log ^{L}n$ for some $L$ independent of the density $\unicode[STIX]{x1D6FF}$. This improves slightly on a result from our previous paper, in which $L$ was allowed to depend on $\unicode[STIX]{x1D6FF}$.
$$\begin{eqnarray}\mathfrak{P}_{n}=\mathop{\prod }_{\substack{ p \\ s_{p}(n)\geqslant p}}p,\end{eqnarray}$$
where $p$ runs over primes and $s_{p}(n)$ is the sum of the base $p$ digits of $n$. For all $n$ we prove that $\mathfrak{P}_{n}$ is divisible by all “small” primes with at most one exception. We also show that $\mathfrak{P}_{n}$ is large and has many prime factors exceeding $\sqrt{n}$, with the largest one exceeding $n^{20/37}$. We establish Kellner’s conjecture that the number of prime factors exceeding $\sqrt{n}$ grows asymptotically as $\unicode[STIX]{x1D705}\sqrt{n}/\text{log}\,n$ for some constant $\unicode[STIX]{x1D705}$ with $\unicode[STIX]{x1D705}=2$. Further, we compare the sizes of $\mathfrak{P}_{n}$ and $\mathfrak{P}_{n+1}$, leading to the somewhat surprising conclusion that although $\mathfrak{P}_{n}$ tends to infinity with $n$, the inequality $\mathfrak{P}_{n}>\mathfrak{P}_{n+1}$ is more frequent than its reverse.
Let $A$ be a set of natural numbers. Recent work has suggested a strong link between the additive energy of $A$ (the number of solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ with $a_{i}\in A$) and the metric Poissonian property, which is a fine-scale equidistribution property for dilates of $A$ modulo $1$. There appears to be reasonable evidence to speculate a sharp Khinchin-type threshold, that is, to speculate that the metric Poissonian property should be completely determined by whether or not a certain sum of additive energies is convergent or divergent. In this article, we primarily address the convergence theory, in other words the extent to which having a low additive energy forces a set to be metric Poissonian.
We prove that the exponent of distribution of $\unicode[STIX]{x1D70F}_{3}$ in arithmetic progressions can be as large as $\frac{1}{2}+\frac{1}{34}$, provided that the moduli is squarefree and has only sufficiently small prime factors. The tools involve arithmetic exponent pairs for algebraic trace functions, as well as a double $q$-analogue of the van der Corput method for smooth bilinear forms.
We provide lower bounds for $p$-adic valuations of multisums of factorial ratios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb and Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms of powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on the $p$-adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a sequence of factorial ratios to satisfy the $p$-Lucas property for almost all primes $p$.
Let $a_{1},a_{2},\ldots ,a_{m}$ and $b_{1},b_{2},\ldots ,b_{l}$ be two sequences of pairwise distinct positive integers greater than $1$. Assume also that none of the above numbers is a perfect power. If for each positive integer $n$ and prime number $p$ the number $\prod _{i=1}^{m}(1-a_{i}^{n})$ is divisible by $p$ if and only if the number $\prod _{j=1}^{l}(1-b_{j}^{n})$ is divisible by $p$, then $m=l$ and $\{a_{1},a_{2},\ldots ,a_{m}\}=\{b_{1},b_{2},\ldots ,b_{l}\}$.
Let $\mathbb{N}$ be the set of all nonnegative integers. For a given set $S\subset \mathbb{N}$ the representation function $R_{S}(n)$ counts the number of solutions of the equation $n=s+s^{\prime }$ with $s<s^{\prime }$ and $s,s^{\prime }\in S$. We obtain some results on a problem of Chen and Lev [‘Integer sets with identical representation functions’, Integers16 (2016), Article ID A36, 4 pages] about sets $A$ and $B$ such that $A\cup B=\mathbb{N}$, $A\cap B=r+m\mathbb{N}$ and whose representation functions coincide.
Let [An,k]n,k⩾0 be an infinite lower triangular array satisfying the recurrence
for n ⩾ 1 and k ⩾ 0, where A0,0 = 1, A0,k = Ak,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.
We construct and study a certain zeta function which interpolates multi-poly-Bernoulli numbers at nonpositive integers and whose values at positive integers are linear combinations of multiple zeta values. This function can be regarded as the one to be paired up with the $\unicode[STIX]{x1D709}$-function defined by Arakawa and Kaneko. We show that both are closely related to the multiple zeta functions. Further we define multi-indexed poly-Bernoulli numbers, and generalize the duality formulas for poly-Bernoulli numbers by introducing more general zeta functions.
For any finite abelian group $G$ with $|G|=m$, $A\subseteq G$ and $g\in G$, let $R_{A}(g)$ be the number of solutions of the equation $g=a+b$, $a,b\in A$. Recently, Sándor and Yang [‘A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture’, Preprint, 2016, arXiv:1612.08722v1] proved that, if $m\geq 36$ and $R_{A}(n)\geq 1$ for all $n\in \mathbb{Z}_{m}$, then there exists $n\in \mathbb{Z}_{m}$ such that $R_{A}(n)\geq 6$. In this paper, for any finite abelian group $G$ with $|G|=m$ and $A\subseteq G$, we prove that (a) if the number of $g\in G$ with $R_{A}(g)=0$ does not exceed $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$, then there exists $g\in G$ such that $R_{A}(g)\geq 6$; (b) if $1\leq R_{A}(g)\leq 6$ for all $g\in G$, then the number of $g\in G$ with $R_{A}(g)=6$ is more than $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$.
In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.
We investigate the monotonic characteristics of the generalised binomial coefficients (phinomials) based upon Euler’s totient function. We show, unconditionally, that the set of integers for which this sequence is unimodal is finite and, assuming the generalised Riemann hypothesis, we find all the exceptions.