To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $n\in \mathbb{Z}$ and $A\subseteq \mathbb{Z}$, define $r_{A}(n)$ and ${\it\delta}_{A}(n)$ by $r_{A}(n)=\#\{(a_{1},a_{2})\in A^{2}:n=a_{1}+a_{2},a_{1}\leq a_{2}\}$ and ${\it\delta}_{A}(n)=\#\{(a_{1},a_{2})\in A^{2}:n=a_{1}-a_{2}\}$. We call $A$ a unique representation bi-basis if $r_{A}(n)=1$ for all $n\in \mathbb{Z}$ and ${\it\delta}_{A}(n)=1$ for all $n\in \mathbb{Z}\setminus \{0\}$. In this paper, we prove that there exists a unique representation bi-basis $A$ such that $\limsup _{x\rightarrow \infty }A(-x,x)/\sqrt{x}\geq 1/\sqrt{2}$.
We show that if a finite, large enough subset $A$ of an arbitrary abelian group $G$ satisfies the small doubling condition $|A+A|\leqslant (\log |A|)^{1-{\it\varepsilon}}|A|$, then $A$ must contain a three-term arithmetic progression whose terms are not all equal, and $A+A$ must contain an arithmetic progression or a coset of a subgroup, either of which is of size at least $\exp [c(\log |A|)^{{\it\delta}}]$. This extends analogous results obtained by Sanders, and by Croot, Łaba and Sisask in the case where $G=\mathbb{Z}$.
In this paper, we investigate in various ways the representation of a large natural number as a sum of a fixed power of Piatetski-Shapiro numbers, thereby establishing a variant of the Hilbert–Waring problem with numbers from a sparse sequence.
In this paper we give an extension of the results of the generalized waiting time problem given by El-Desouky and Hussen (1990). An urn contains m types of balls of unequal numbers, and balls are drawn with replacement until first duplication. In the case of finite memory of order k, let ni be the number of type i, i = 1, 2, …, m. The probability of success pi = ni/N, i = 1, 2, …, m, where ni is a positive integer and Let Ym,k be the number of drawings required until first duplication. We obtain some new expressions of the probability function, in terms of Stirling numbers, symmetric polynomials, and generalized harmonic numbers. Moreover, some special cases are investigated. Finally, some important new combinatorial identities are obtained.
We show that the restriction to square-free numbers of the representation function attached to a norm form does not correlate with nilsequences. By combining this result with previous work of Browning and the author, we obtain an application that is used in recent work of Harpaz and Wittenberg on the fibration method for rational points.
Let G be an additive abelian group, let n ⩾ 1 be an integer, let S be a sequence over G of length |S| ⩾ n + 1, and let ${\mathsf h}$(S) denote the maximum multiplicity of a term in S. Let Σn(S) denote the set consisting of all elements in G which can be expressed as the sum of terms from a subsequence of S having length n. In this paper, we prove that either ng ∈ Σn(S) for every term g in S whose multiplicity is at least ${\mathsf h}$(S) − 1 or |Σn(S)| ⩾ min{n + 1, |S| − n + | supp (S)| − 1}, where |supp(S)| denotes the number of distinct terms that occur in S. When G is finite cyclic and n = |G|, this confirms a conjecture of Y. O. Hamidoune from 2003.
Using results from Ramanujan's lost notebook, Zudilin recently gave an insightful proof of a radial limit result of Folsom et al. for mock theta functions. Here we see that Mortenson's previous work on the dual nature of Appell–Lerch sums and partial theta functions and on constructing bilateral q-series with mixed mock modular behaviour is well suited for such radial limits. We present five more radial limit results, which follow from mixed mock modular bilateral q-hypergeometric series. We also obtain the mixed mock modular bilateral series for a universal mock theta function of Gordon and McIntosh. The later bilateral series can be used to compute radial limits for many classical second-, sixth-, eighth- and tenth-order mock theta functions.
We prove some new bounds for the size of the maximal dissociated subset of structured (having small sumset, large energy and so on) subsets of an abelian group.
A set A of positive integers is a Bh-set if all the sums of the form a1 + . . . + ah, with a1,. . .,ah ∈ A and a1 ⩽ . . . ⩽ ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,. . .,n}. As a consequence of our results, we address a problem of Cameron and Erdős (1990) in the context of Bh-sets. We also use these results to estimate the maximum size of a Bh-sets contained in a typical (random) subset of [n] with a given cardinality.
We demonstrate that many properties of topological spaces connected with the notion of resolvability are preserved by the relation of similarity between topologies. Moreover, many of them can be characterised by the properties of the algebra of sets with nowhere dense boundary and the ideal of nowhere dense sets. We use these results to investigate whether a given pair of an algebra and an ideal is topological.
Let $g\geq 2$ be a fixed integer. Let $\mathbb{N}$ denote the set of all nonnegative integers and let $A$ be a subset of $\mathbb{N}$. Write $r_{2}(A,n)=\sharp \{(a_{1},a_{2})\in A^{2}:a_{1}+a_{2}=n\}.$ We construct a thin, strongly minimal, asymptotic $g$-adic basis $A$ of order two such that the set of $n$ with $r_{2}(A,n)=2$ has density one.
Let $\mathbb{A}=(A,+)$ be a (possibly non-commutative) semigroup. For $Z\subseteq A$, we define $Z^{\times }:=Z\cap \mathbb{A}^{\times }$, where $\mathbb{A}^{\times }$ is the set of the units of $\mathbb{A}$ and
The paper investigates some properties of ${\it\gamma}(\cdot )$ and shows the following extension of the Cauchy–Davenport theorem: if $\mathbb{A}$ is cancellative and $X,Y\subseteq A$, then
This implies a generalization of Kemperman’s inequality for torsion-free groups and strengthens another extension of the Cauchy–Davenport theorem, where $\mathbb{A}$ is a group and ${\it\gamma}(X+Y)$ in the above is replaced by the infimum of $|S|$ as $S$ ranges over the non-trivial subgroups of $\mathbb{A}$ (Hamidoune–Károlyi theorem).
Let $G$ be a finite abelian group and $A\subseteq G$. For $n\in G$, denote by $r_{A}(n)$ the number of ordered pairs $(a_{1},a_{2})\in A^{2}$ such that $a_{1}+a_{2}=n$. Among other things, we prove that for any odd number $t\geq 3$, it is not possible to partition $G$ into $t$ disjoint sets $A_{1},A_{2},\dots ,A_{t}$ with $r_{A_{1}}=r_{A_{2}}=\cdots =r_{A_{t}}$.
We study analytic properties of certain infinite products of cyclotomic polynomials that generalise some products introduced by Mahler. We characterise those that have the unit circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic behaviour near roots of unity.
The Frobenius number $F(\boldsymbol{a})$ of a lattice point $\boldsymbol{a}$ in $\mathbb{R}^{d}$ with positive coprime coordinates, is the largest integer which can not be expressed as a non-negative integer linear combination of the coordinates of $\boldsymbol{a}$. Marklof in [The asymptotic distribution of Frobenius numbers, Invent. Math. 181 (2010), 179–207] proved the existence of the limit distribution of the Frobenius numbers, when $\boldsymbol{a}$ is taken to be random in an enlarging domain in $\mathbb{R}^{d}$. We will show that if the domain has piecewise smooth boundary, the error term for the convergence of the distribution function is at most a polynomial in the enlarging factor.
Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree $\mathsf{c}(H)$ of $H$ is the smallest integer $N$ with the following property: for each $a\in H$ and each pair of factorizations $z,z^{\prime }$ of $a$, there exist factorizations $z=z_{0},\dots ,z_{k}=z^{\prime }$ of $a$ such that, for each $i\in [1,k]$, $z_{i}$ arises from $z_{i-1}$ by replacing at most $N$ atoms from $z_{i-1}$ by at most $N$ new atoms. To exclude trivial cases, suppose that $|G|\geq 3$. Then the catenary degree depends only on the class group $G$ and we have $\mathsf{c}(H)\in [3,\mathsf{D}(G)]$, where $\mathsf{D}(G)$ denotes the Davenport constant of $G$. The cases when $\mathsf{c}(H)\in \{3,4,\mathsf{D}(G)\}$ have been previously characterized (see Theorem A). Based on a characterization of the catenary degree determined in the paper by Geroldinger et al. [‘The catenary degree of Krull monoids I’, J. Théor. Nombres Bordeaux23 (2011), 137–169], we determine the class groups satisfying $\mathsf{c}(H)=\mathsf{D}(G)-1$. Apart from the extremal cases mentioned, the precise value of $\mathsf{c}(H)$ is known for no further class groups.
This paper considers algebraic independence and hypertranscendence of functions satisfying Mahler-type functional equations $af(z^{r})=f(z)+R(z)$, where $a$ is a nonzero complex number, $r$ an integer greater than 1, and $R(z)$ a rational function. Well-known results from the scope of Mahler’s method then imply algebraic independence over the rationals of the values of these functions at algebraic points. As an application, algebraic independence results on reciprocal sums of Fibonacci and Lucas numbers are obtained.
Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that
We obtain density estimates for subsets of the $n$-dimensional integer lattice lacking four-term matrix progressions. As a consequence, we show that a subset of the grid $\{1,2,\dots ,N\}^{2}$ lacking four corners in a square has size at most $\mathit{CN}^{2}(\log \log N)^{-c}$. Our proofs involve the density increment method of Roth [J. London Math. Soc.28 (1953), 104–109] and Gowers [Geom. Funct. Anal.11(3) (2001), 465–588], together with the $U^{3}$-inverse theorem of Green and Tao [Proc. Edinb. Math. Soc. (2) 51(1) (2008), 73–153].