We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3. Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
Let β>1 be a real number, and let {ak} be an unbounded sequence of positive integers such that ak+1/ak≤β for all k≥1. The following result is proved: if n is an integer with n>(1+1/(2β))a1 and A is a subset of {0,1,…,n} with , then (A+A)∩(A−A)contains a term of {ak }. The lower bound for |A| is optimal. Beyond these, we also prove that if n≥3is an integer and A is a subset of {0,1,…,n} with , then (A+A)∩(A−A)contains a power of 2. Furthermore, cannot be improved.
For a prime power q, let 𝔽q be the finite field of q elements. We show that 𝔽*q⊆d𝒜2 for almost every subset 𝒜⊂𝔽q of cardinality ∣𝒜∣≫q1/d. Furthermore, if q=p is a prime, and 𝒜⊆𝔽p of cardinality ∣𝒜∣≫p1/2(log p)1/d, then d𝒜2 contains both large and small residues. We also obtain some results of this type for the Erdős distance problem over finite fields.
A set A⊆ℤ is called an asymptotic basis of ℤ if all but finitely many integers can be represented as a sum of two elements of A. Let A be an asymptotic basis of integers with prescribed representation function, then how dense A can be? In this paper, we prove that there exist a real number c>0 and an asymptotic basis A with prescribed representation function such that for infinitely many positive integers x.
We give improved bounds for our theorem in [W. T. Gowers and J. Wolf, The true complexity of a system of linear equations. Proc. London Math. Soc. (3) 100 (2010), 155–176], which shows that a system of linear forms on 𝔽np with squares that are linearly independent has the expected number of solutions in any linearly uniform subset of 𝔽np. While in [W. T. Gowers and J. Wolf, The true complexity of a system of linear equations. Proc. London Math. Soc. (3) 100 (2010), 155–176] the dependence between the uniformity of the set and the resulting error in the average over the linear system was of tower type, we now obtain a doubly exponential relation between the two parameters. Instead of the structure theorem for bounded functions due to Green and Tao [An inverse theorem for the Gowers U3(G) norm. Proc. Edinb. Math. Soc. (2) 51 (2008), 73–153], we use the Hahn–Banach theorem to decompose the function into a quadratically structured plus a quadratically uniform part. This new decomposition makes more efficient use of the U3 inverse theorem [B. J. Green and T. Tao, An inverse theorem for the Gowers U3(G) norm. Proc. Edinb. Math. Soc. (2) 51 (2008), 73–153].
Let k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n by
If we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi's period k! to lcm(1, 2, … , k) and conjectured that (lcm(1, 2, … , k, k + 1))/(k + 1) divides the smallest period of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0. For the general integers a ≥ 1 and b ≥ 0, it is natural to ask the following interesting question: is gk,a,b periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of positive integers to general arithmetic progressions.
Let P=A×A⊂𝔽p×𝔽p, p a prime. Assume that P=A×A has n elements, n<p. See P as a set of points in the plane over 𝔽p. We show that the pairs of points in P determine lines, where c is an absolute constant. We derive from this an incidence theorem: the number of incidences between a set of n points and a set of n lines in the projective plane over 𝔽p (n<p)is bounded by , where C is an absolute constant.
In this paper, we study how close the terms of a finite arithmetic progression can get to a perfect square. The answer depends on the initial term, the common difference and the number of terms in the arithmetic progression.
A Lehmer number is a composite positive integer n such that ϕ(n)|n − 1. In this paper, we show that given a positive integer g > 1 there are at most finitely many Lehmer numbers which are repunits in base g and they are all effectively computable. Our method is effective and we illustrate it by showing that there is no such Lehmer number when g ∈ [2, 1000].
Erdős and Szekeres [‘Some number theoretic problems on binomial coefficients’, Aust. Math. Soc. Gaz.5 (1978), 97–99] showed that for any four positive integers satisfying m1+m2=n1+n2, the two binomial coefficients (m1+m2)!/m1!m2! and (n1+n2)!/n1!n2! have a common divisor greater than 1. The analogous statement for k-element families of k-nomial coefficients (k>1) was conjectured in 1997 by David Wasserman.
Erdős and Szekeres remark that if m1,m2,n1,n2 as above are all greater than 1, there is probably a lower bound on the common divisor in question which goes to infinity as a function of m1 +m2 .Such a bound is obtained in Section 2.
The remainder of this paper is devoted to proving results that narrow the class of possible counterexamples to Wasserman’s conjecture.
Let σA(n)=∣{(a,a′)∈A2:a+a′=n}∣, where n∈ℕ and A is a subset of ℕ. Erdős and Turán con-jectured that for any basis A of ℕ, σA(n) is unbounded. In 1990, Ruzsa constructed a basis A⊂ℕ for which σA(n) is bounded in square mean. Based on Ruzsa’s method, we proved that there exists a basis A of ℕ satisfying ∑ n≤Nσ2A(n)≤1449757928N for large enough N. In this paper, we give a quantitative result for the existence of N, that is, we show that there exists a basis A of ℕ satisfying ∑ n≤Nσ2A(n)≤1069693154N for N≥7.628 517 798×1027, which improves earlier results of the author [‘A note on a result of Ruzsa’, Bull. Aust. Math. Soc.77 (2008), 91–98].
We show that if G is a group and A⊂G is a finite set with ∣A2∣≤K∣A∣, then there is a symmetric neighbourhood of the identity S such that Sk⊂A2A−2 and ∣S∣≥exp (−KO(k))∣A∣.
We describe the structure of ‘K-approximate subgroups’ of torsion-free nilpotent groups, paying particular attention to Lie groups.
Three other works, by Fisher et al., by Sanders and by Tao, have appeared that independently address related issues. We comment briefly on some of the connections between these papers.
Let 𝒜={as(mod ns)}ks=0 be a system of residue classes. With the help of cyclotomic fields we obtain a theorem which unifies several previously known results related to the covering multiplicity of 𝒜. In particular, we show that if every integer lies in more than m0=⌊∑ ks=11/ns⌋ members of 𝒜, then for any a=0,1,2,… there are at least subsets I of {1,…,k} with ∑ s∈I1/ns=a/n0. We also characterize when any integer lies in at most m members of 𝒜, where m is a fixed positive integer.
A number is called upper (lower) flat if its shift by +1 ( −1) is a power of 2 times a squarefree number. If the squarefree number is 1 or a single odd prime then the original number is called upper (lower) thin. Upper flat numbers which are primes arise in the study of multi-perfect numbers. Here we show that the lower or upper flat primes have asymptotic density relative to that of the full set of primes given by twice Artin’s constant, that more than 53% of the primes are both lower and upper flat, and that the series of reciprocals of the lower or the upper thin primes converges.
We prove that for any positive integers x,d and k with gcd (x,d)=1 and 3<k<35, the product x(x+d)⋯(x+(k−1)d) cannot be a perfect power. This yields a considerable extension of previous results of Győry et al. and Bennett et al., which covered the cases where k≤11. We also establish more general theorems for the case where x can also be a negative integer and where the product yields an almost perfect power. As in the proofs of the earlier theorems, for fixed k we reduce the problem to systems of ternary equations. However, our results do not follow as a mere computational sharpening of the approach utilized previously; instead, they require the introduction of fundamentally new ideas. For k>11, a large number of new ternary equations arise, which we solve by combining the Frey curve and Galois representation approach with local and cyclotomic considerations. Furthermore, the number of systems of equations grows so rapidly with k that, in contrast with the previous proofs, it is practically impossible to handle the various cases in the usual manner. The main novelty of this paper lies in the development of an algorithm for our proofs, which enables us to use a computer. We apply an efficient, iterated combination of our procedure for solving the new ternary equations that arise with several sieves based on the ternary equations already solved. In this way, we are able to exclude the solvability of the enormous number of systems of equations under consideration. Our general algorithm seems to work for larger values of k as well, although there is, of course, a computational time constraint.