We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
for a finite $A\subset \mathbb {R}$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques.
We establish a family of q-supercongruences modulo the cube of a cyclotomic polynomial for truncated basic hypergeometric series. This confirms a weaker form of a conjecture of the present authors. Our proof employs a very-well-poised Karlsson–Minton type summation due to Gasper, together with the ‘creative microscoping’ method introduced by the first author in recent joint work with Zudilin.
Let $f(x)\in \mathbb {Z}[x]$ be a nonconstant polynomial. Let $n\ge 1, k\ge 2$ and c be integers. An integer a is called an f-exunit in the ring $\mathbb {Z}_n$ of residue classes modulo n if $\gcd (f(a),n)=1$. We use the principle of cross-classification to derive an explicit formula for the number ${\mathcal N}_{k,f,c}(n)$ of solutions $(x_1,\ldots ,x_k)$ of the congruence $x_1+\cdots +x_k\equiv c\pmod n$ with all $x_i$ being f-exunits in the ring $\mathbb {Z}_n$. This extends a recent result of Anand et al. [‘On a question of f-exunits in $\mathbb {Z}/{n\mathbb {Z}}$’, Arch. Math. (Basel)116 (2021), 403–409]. We derive a more explicit formula for ${\mathcal N}_{k,f,c}(n)$ when $f(x)$ is linear or quadratic.
We show that there is a measure-preserving system $(X,\mathscr {B}, \mu , T)$ together with functions $F_0, F_1, F_2 \in L^{\infty }(\mu )$ such that the correlation sequence $C_{F_0, F_1, F_2}(n) = \int _X F_0 \cdot T^n F_1 \cdot T^{2n} F_2 \, d\mu $ is not an approximate integral combination of $2$-step nilsequences.
Fix an abelian group $\Gamma $ and an injective endomorphism $F\colon \Gamma \to \Gamma $. Improving on the results of [2], new characterizations are here obtained for the existence of spanning sets, F-automaticity, and F-sparsity. The model theoretic status of these sets is also investigated, culminating with a combinatorial description of the F-sparse sets that are stable in $(\Gamma ,+)$, and a proof that the expansion of $(\Gamma ,+)$ by any F-sparse set is NIP. These methods are also used to show for prime $p\ge 7$ that the expansion of $(\mathbb {F}_p[t],+)$ by multiplication restricted to $t^{\mathbb {N}}$ is NIP.
The true complexity of a polynomial progression in finite fields corresponds to the smallest-degree Gowers norm that controls the counting operator of the progression over finite fields of large characteristic. We give a conjecture that relates true complexity to algebraic relations between the terms of the progression, and we prove it for a number of progressions, including $x, x+y, x+y^{2}, x+y+y^{2}$ and $x, x+y, x+2y, x+y^{2}$. As a corollary, we prove an asymptotic for the count of certain progressions of complexity 1 in subsets of finite fields. In the process, we obtain an equidistribution result for certain polynomial progressions, analogous to the counting lemma for systems of linear forms proved by Green and Tao.
We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao [CFSZ20] on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.
Let $\pi $ be an automorphic irreducible cuspidal representation of $\mathrm{GL}_{m}$ over $\mathbb {Q}$. Denoted by $\lambda _{\pi }(n)$ the nth coefficient in the Dirichlet series expansion of $L(s,\pi )$ associated with $\pi $. Let $\pi _{1}$ be an automorphic irreducible cuspidal representation of $\mathrm{SL}(2,\mathbb {Z})$. Denoted by $\lambda _{\pi _{1}\times \pi _{1}}(n)$ the nth coefficient in the Dirichlet series expansion of $L(s,\pi _{1}\times \pi _{1})$ associated with $\pi _{1}\times \pi _{1}$. In this paper, we study the cancellations of $\lambda _{\pi }(n)$ and $\lambda _{\pi _{1}\times \pi _{1}}(n)$ over Beatty sequences.
Fix positive integers k and n with $k \leq n$. Numbers $x_0, x_1, x_2, \ldots , x_{n - 1}$, each equal to $\pm {1}$, are cyclically arranged (so that $x_0$ follows $x_{n - 1}$) in that order. The problem is to find the product $P = x_0x_1 \cdots x_{n - 1}$ of all n numbers by asking the smallest number of questions of the type $Q_i$: what is $x_ix_{i + 1}x_{i + 2} \cdots x_{i+ k -1}$? (where all the subscripts are read modulo n). This paper studies the problem and some of its generalisations.
Let k and l be positive integers satisfying $k \ge 2, l \ge 1$. A set $\mathcal {A}$ of positive integers is an asymptotic basis of order k if every large enough positive integer can be represented as the sum of k terms from $\mathcal {A}$. About 35 years ago, P. Erdős asked: does there exist an asymptotic basis of order k where all the subset sums with at most l terms are pairwise distinct with the exception of a finite number of cases as long as $l \le k - 1$? We use probabilistic tools to prove the existence of an asymptotic basis of order $2k+1$ for which all the sums of at most k elements are pairwise distinct except for ‘small’ numbers.
We prove that if $A \subseteq [X,\,2X]$ and $B \subseteq [Y,\,2Y]$ are sets of integers such that gcd (a, b) ⩾ D for at least δ|A||B| pairs (a, b) ε A × B then $|A||B|{ \ll _{\rm{\varepsilon }}}{\delta ^{ - 2 - \varepsilon }}XY/{D^2}$. This is a new result even when δ = 1. The proof uses ideas of Koukoulopoulos and Maynard and some additional combinatorial arguments.
Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-g Niven numbers.
We show that for infinitely many primes p there exist dual functions of order k over ${\mathbb{F}}_p^n$ that cannot be approximated in $L_\infty $-distance by polynomial phase functions of degree $k-1$. This answers in the negative a natural finite-field analogue of a problem of Frantzikinakis on $L_\infty $-approximations of dual functions over ${\mathbb{N}}$ (a.k.a. multiple correlation sequences) by nilsequences.
We investigate additive properties of sets $A,$ where $A=\{a_1,a_2,\ldots ,a_k\}$ is a monotone increasing set of real numbers, and the differences of consecutive elements are all distinct. It is known that $|A+B|\geq c|A||B|^{1/2}$ for any finite set of numbers $B.$ The bound is tight up to the constant multiplier. We give a new proof to this result using bounds on crossing numbers of geometric graphs. We construct examples showing the limits of possible improvements. In particular, we show that there are arbitrarily large sets with different consecutive differences and sub-quadratic sumset size.
We prove a quantitative partial result in support of the dynamical Mordell–Lang conjecture (also known as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field K of characteristic p, a semiabelian variety X defined over a finite subfield of K and endowed with a regular self-map $\Phi :X{\longrightarrow } X$ defined over K, a point $\alpha \in X(K)$ and a subvariety $V\subseteq X$, then the set of all nonnegative integers n such that $\Phi ^n(\alpha )\in V(K)$ is a union of finitely many arithmetic progressions along with a subset S with the property that there exists a positive real number A (depending only on X, $\Phi $, $\alpha $ and V) such that for each positive integer M,
We show that in a parametric family of linear recurrence sequences $a_1(\alpha ) f_1(\alpha )^n + \cdots + a_k(\alpha ) f_k(\alpha )^n$ with the coefficients $a_i$ and characteristic roots $f_i$, $i=1, \ldots ,k$, given by rational functions over some number field, for all but a set of elements $\alpha $ of bounded height in the algebraic closure of ${\mathbb Q}$, the Skolem problem is solvable, and the existence of a zero in such a sequence can be effectively decided. We also discuss several related questions.
The Corners theorem states that for any α > 0 there exists an N0 such that for any abelian group G with |G| = N ≥ N0 and any subset A ⊂ G×G with |A| ≥ αN2 we can find a corner in A, i.e. there exist x, y, d ∈ G with d ≠ 0 such that (x,y),(x+d,y),(x,y+d) ∈ A.
Here, we consider a stronger version, in which we try to find many corners of the same size. Given such a group G and subset A, for each d ∈ G we define Sd={(x,y) ∈ G × G: (x,y),(x+d,y),(x,y+d) ∈ A}. So |Sd| is the number of corners of size d. Is it true that, provided N is sufficiently large, there must exist some d ∈G\{0} such that |Sd|>(α3-ϵ)N2?
We answer this question in the negative. We do this by relating the problem to a much simpler-looking problem about random variables. Then, using this link, we show that there are sets A with |Sd|>Cα3.13N2 for all d ≠ 0, where C is an absolute constant. We also show that in the special case where $G = {\mathbb{F}}_2^n$, one can always find a d with |Sd|>(α4-ϵ)N2.
A set of integers is primitive if it does not contain an element dividing another. Let f(n) denote the number of maximum-size primitive subsets of {1,…,2n}. We prove that the limit α = limn→∞f(n)1/n exists. Furthermore, we present an algorithm approximating α with (1 + ε) multiplicative error in N(ε) steps, showing in particular that α ≈ 1.318. Our algorithm can be adapted to estimate the number of all primitive sets in {1,…,n} as well.
We address another related problem of Cameron and Erdős. They showed that the number of sets containing pairwise coprime integers in {1,…n} is between ${2^{\pi (n)}} \cdot {e^{(1/2 + o(1))\sqrt n }}$ and ${2^{\pi (n)}} \cdot {e^{(2 + o(1))\sqrt n }}$. We show that neither of these bounds is tight: there are in fact ${2^{\pi (n)}} \cdot {e^{(1 + o(1))\sqrt n }}$ such sets.
For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$, and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$, see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that $\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$.