We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the $\mathbb{C}$-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
By combining the generating function approach with the Lagrange expansion formula, we evaluate, in closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart.3(2) (1965), 81–89].
A finite set of integers A tiles the integers by translations if $\mathbb {Z}$ can be covered by pairwise disjoint translated copies of A. Restricting attention to one tiling period, we have $A\oplus B=\mathbb {Z}_M$ for some $M\in \mathbb {N}$ and $B\subset \mathbb {Z}$. This can also be stated in terms of cyclotomic divisibility of the mask polynomials $A(X)$ and $B(X)$ associated with A and B.
In this article, we introduce a new approach to a systematic study of such tilings. Our main new tools are the box product, multiscale cuboids and saturating sets, developed through a combination of harmonic-analytic and combinatorial methods. We provide new criteria for tiling and cyclotomic divisibility in terms of these concepts. As an application, we can determine whether a set A containing certain configurations can tile a cyclic group $\mathbb {Z}_M$, or recover a tiling set based on partial information about it. We also develop tiling reductions where a given tiling can be replaced by one or more tilings with a simpler structure. The tools introduced here are crucial in our proof in [24] that all tilings of period $(pqr)^2$, where $p,q,r$ are distinct odd primes, satisfy a tiling condition proposed by Coven and Meyerowitz [2].
We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that
where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $.
Let $\mathbb {N}$ be the set of all nonnegative integers. For $S\subseteq \mathbb {N}$ and $n\in \mathbb {N}$, let $R_S(n)$ denote the number of solutions of the equation $n=s_1+s_2$, $s_1,s_2\in S$ and $s_1<s_2$. Let A be the set of all nonnegative integers which contain an even number of digits $1$ in their binary representations and $B=\mathbb {N}\setminus A$. Put $A_l=A\cap [0,2^l-1]$ and $B_l=B\cap [0,2^l-1]$. We prove that if $C \cup D=[0, m]\setminus \{r\}$ with $0<r<m$, $C \cap D=\emptyset $ and $0 \in C$, then $R_{C}(n)=R_{D}(n)$ for any nonnegative integer n if and only if there exists an integer $l \geq 1$ such that $m=2^{l}$, $r=2^{l-1}$, $C=A_{l-1} \cup (2^{l-1}+1+B_{l-1})$ and $D=B_{l-1} \cup (2^{l-1}+1+A_{l-1})$. Kiss and Sándor [‘Partitions of the set of nonnegative integers with the same representation functions’, Discrete Math.340 (2017), 1154–1161] proved an analogous result when $C\cup D=[0,m]$, $0\in C$ and $C\cap D=\{r\}$.
For a set A of positive integers and any positive integer n, let $R_{1}(A, n)$, $R_{2}(A,n)$ and $R_{3}(A,n)$ denote the number of solutions of $a+a^{\prime }=n$ with $a, a^{\prime }\in A$ and the additional restriction that $a<a^{\prime }$ for $R_{2}$ and $a\leq a^{\prime }$ for $R_{3}$. We consider Problem 6 of Erdős et al. [‘On additive properties of general sequences’, Discrete Math.136 (1994), 75–99] about locally small and locally large values of $R_{1}, R_{2}$ and $R_{3}$.
Let $k\geq 2$ be an integer. We prove that the 2-automatic sequence of odious numbers $\mathcal {O}$ is a k-additive uniqueness set for multiplicative functions: if a multiplicative function f satisfies a multivariate Cauchy’s functional equation $f(x_1+x_2+\cdots +x_k)=f(x_1)+f(x_2)+\cdots +f(x_k)$ for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$, then f is the identity function $f(n)=n$ for all $n\in \mathbb {N}$.
In 1946, Erdős and Niven proved that no two partial sums of the harmonic series can be equal. We present a generalisation of the Erdős–Niven theorem by showing that no two partial sums of the series $\sum _{k=0}^\infty {1}/{(a+bk)}$ can be equal, where a and b are positive integers. The proof of our result uses analytic and p-adic methods.
We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma, states that for each $\epsilon>0$ there exists M such that every triangle-free graph G has an $\epsilon$-approximate homomorphism to a triangle-free graph F on at most M vertices (here an $\epsilon$-approximate homomorphism is a map $V(G) \to V(F)$ where all but at most $\epsilon \left\lvert{V(G)}\right\rvert^2$ edges of G are mapped to edges of F). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $\epsilon^{-1}$. We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal.
We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice $ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $ with balls of radius $ 2 $ under the $ \ell _1 $ metric (or, equivalently, a covering of the integer lattice $ \mathbb {Z} ^n $ with balls of radius $ 1 $ under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of $ A_n $. This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets.
we define four notions of complexity: Host–Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third refers to the smallest-degree Gowers norm controlling the progression, and the fourth concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host–Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose terms only satisfy homogeneous algebraic relations and linear combinations thereof. This family of polynomial progressions includes, but is not limited to, arithmetic progressions, progressions with linearly independent polynomials $P_1, \ldots ,\!P_t$ and progressions whose terms satisfy no quadratic relations. For progressions that satisfy only linear relations, such as
we derive several combinatorial and dynamical corollaries: first, an estimate for the count of such progressions in subsets of $\mathbb {Z}/N\mathbb {Z}$ or totally ergodic dynamical systems; second, a lower bound for multiple recurrence; and third, a popular common difference result in $\mathbb {Z}/N\mathbb {Z}$. Lastly, we show that Weyl complexity and algebraic complexity always agree, which gives a straightforward algebraic description of Weyl complexity.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
Let G be a $\sigma $-finite abelian group, i.e., $G=\bigcup _{n\geq 1} G_n$ where $(G_n)_{n\geq 1}$ is a nondecreasing sequence of finite subgroups. For any $A\subset G$, let $\underline {\mathrm {d}}( A ):=\liminf _{n\to \infty }\frac {|A\cap G_n|}{|G_n|}$ be its lower asymptotic density. We show that for any subsets A and B of G, whenever $\underline {\mathrm {d}}( A+B )<\underline {\mathrm {d}}( A )+\underline {\mathrm {d}}( B )$, the sumset $A+B$ must be periodic, that is, a union of translates of a subgroup $H\leq G$ of finite index. This is exactly analogous to Kneser’s theorem regarding the density of infinite sets of integers. Further, we show similar statements for the upper asymptotic density in the case where $A=\pm B$. An analagous statement had already been proven by Griesmer in the very general context of countable abelian groups, but the present paper provides a much simpler argument specifically tailored for the setting of $\sigma $-finite abelian groups. This argument relies on an appeal to another theorem of Kneser, namely the one regarding finite sumsets in an abelian group.
In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over ${\mathbb Z}$ is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set $\Lambda $ and a fully Euclidean model set with the property that finitely many translates of cover $\Lambda $, we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in $\Lambda $ if and only if k is at most the rank of the ${\mathbb Z}$-module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$-approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$-approximation.
We show that there exist uncountably many (tall and nontall) pairwise nonisomorphic density-like ideals on $\omega $ which are not generalized density ideals. In addition, they are nonpathological. This answers a question posed by Borodulin-Nadzieja et al. in [this Journal, vol. 80 (2015), pp. 1268–1289]. Lastly, we provide sufficient conditions for a density-like ideal to be necessarily a generalized density ideal.
In addition to the features of the two-parameter Chinese restaurant process (CRP), the restaurant under consideration has a cocktail bar and hence allows for a wider range of (bar and table) occupancy mechanisms. The model depends on three real parameters, $\alpha$, $\theta_1$, and $\theta_2$, fulfilling certain conditions. Results known for the two-parameter CRP are carried over to this model. We study the number of customers at the cocktail bar, the number of customers at each table, and the number of occupied tables after n customers have entered the restaurant. For $\alpha>0$ the number of occupied tables, properly scaled, is asymptotically three-parameter Mittag–Leffler distributed as n tends to infinity. We provide representations for the two- and three-parameter Mittag–Leffler distribution leading to efficient random number generators for these distributions. The proofs draw heavily from methods known for exchangeable random partitions, martingale methods known for generalized Pólya urns, and results known for the two-parameter CRP.
We investigate, for given positive integers a and b, the least positive integer $c=c(a,b)$ such that the quotient $\varphi (c!\kern-1.2pt)/\varphi (a!\kern-1.2pt)\varphi (b!\kern-1.2pt)$ is an integer. We derive results on the limit of $c(a,b)/(a+b)$ as a and b tend to infinity and show that $c(a,b)>a+b$ for all pairs of positive integers $(a,b)$, with the exception of a set of density zero.