We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any positive integers $k_1,k_2$ and any set $A\subseteq \mathbb {N}$, let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$. Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\le k_1<k_2$ and $(k_1,k_2)=1$, then there does not exist any set $A\subseteq \mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$ for all sufficiently large integers n, and if $1=k_1<k_2$, then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=1$ for all positive integers n.
We study higher uniformity properties of the Möbius function $\mu $, the von Mangoldt function $\Lambda $, and the divisor functions $d_k$ on short intervals $(X,X+H]$ with $X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$ for a fixed constant $0 \leq \theta < 1$ and any $\varepsilon>0$.
More precisely, letting $\Lambda ^\sharp $ and $d_k^\sharp $ be suitable approximants of $\Lambda $ and $d_k$ and $\mu ^\sharp = 0$, we show for instance that, for any nilsequence $F(g(n)\Gamma )$, we have
$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$
when $\theta = 5/8$ and $f \in \{\Lambda , \mu , d_k\}$ or $\theta = 1/3$ and $f = d_2$.
As a consequence, we show that the short interval Gowers norms $\|f-f^\sharp \|_{U^s(X,X+H]}$ are also asymptotically small for any fixed s for these choices of $f,\theta $. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in $L^2$.
Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type $II$ sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type $I_2$ sums.
Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$. We show that for all sufficiently large positive integers l, if $A\subset [0, l]$ with $l\in A$, $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$, where $\lambda =\lceil {k}/{\beta }\rceil $, then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$.
In our paper, we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq {\mathbb {Z}}/q{\mathbb {Z}}$ in the case of composite q. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.
We say that $S\subseteq \mathbb Z$ is a set of k-recurrence if for every measure-preserving transformation T of a probability measure space $(X,\mu )$ and every $A\subseteq X$ with $\mu (A)>0$, there is an $n\in S$ such that $\mu (A\cap T^{-n} A\cap T^{-2n}\cap \cdots \cap T^{-kn}A)>0$. A set of $1$-recurrence is called a set of measurable recurrence. Answering a question of Frantzikinakis, Lesigne, and Wierdl [Sets of k-recurrence but not (k+1)-recurrence. Ann. Inst. Fourier (Grenoble)56(4) (2006), 839–849], we construct a set of $2$-recurrence S with the property that $\{n^2:n\in S\}$ is not a set of measurable recurrence.
Leonetti and Luca [‘On the iterates of the shifted Euler’s function’, Bull. Aust. Math. Soc., to appear] have shown that the integer sequence $(x_n)_{n\geq 1}$ defined by $x_{n+2}=\phi (x_{n+1})+\phi (x_{n})+k$, where $x_1,x_2\geq 1$, $k\geq 0$ and $2 \mid k$, is bounded by $4^{X^{3^{k+1}}}$, where $X=(3x_1+5x_2+7k)/2$. We improve this result by showing that the sequence $(x_n)$ is bounded by $2^{2X^2+X-3}$, where $X=x_1+x_2+2k$.
In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.
We prove that a finite set of natural numbers J satisfies that $J\cup \{0\}$ is not Sidon if and only if for any operator T, the disjoint hypercyclicity of $\{T^j:j\in J\}$ implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that $T\oplus T^2\oplus\cdots \oplus T^n$ is hypercyclic for every n.
For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\leqslant a'$ and $a, a'\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\in A$ with $-x\leqslant a\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\geqslant 1$ for all sufficiently large n, then $\limsup_{n\rightarrow\infty}r_A(n)=\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$ for all $x\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$ and $A(-x,x) \gt (4/\log 5)\log\log x+c$ for all $x\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.
For an integer $b\geq 2$, a positive integer is called a b-Niven number if it is a multiple of the sum of the digits in its base-b representation. In this article, we show that every arithmetic progression contains infinitely many b-Niven numbers.
Let $k\ge 2$ be an integer and let A be a set of nonnegative integers. The representation function $R_{A,k}(n)$ for the set A is the number of representations of a nonnegative integer n as the sum of k terms from A. Let $A(n)$ denote the counting function of A. Bell and Shallit [‘Counterexamples to a conjecture of Dombi in additive number theory’, Acta Math. Hung., to appear] recently gave a counterexample for a conjecture of Dombi and proved that if $A(n)=o(n^{{(k-2)}/{k}-\epsilon })$ for some $\epsilon>0$, then $R_{\mathbb {N}\setminus A,k}(n)$ is eventually strictly increasing. We improve this result to $A(n)=O(n^{{(k-2)}/{(k-1)}})$. We also give an example to show that this bound is best possible.
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck [‘The measure theoretic approach to density’, Amer. J. Math.68 (1946), 560–580].
By examining two hypergeometric series transformations, we establish several remarkable infinite series identities involving harmonic numbers and quintic central binomial coefficients, including five conjectured recently by Z.-W. Sun [‘Series with summands involving harmonic numbers’, Preprint, 2023, arXiv:2210.07238v7]. This is realised by ‘the coefficient extraction method’ implemented by Mathematica commands.
Let $\mathcal {F}$ denote the set of functions $f \colon [-1/2,1/2] \to \mathbb {R}_{\geq 0}$ such that $\int f = 1$. We determine the value of $\inf _{f \in \mathcal {F}} \| f \ast f \|_2^2$ up to a $4 \cdot 10^{-6}$ error, thereby making progress on a problem asked by Ben Green. Furthermore, we prove that a unique minimizer exists. As a corollary, we obtain improvements on the maximum size of $B_h[g]$ sets for $(g,h) \in \{ (2,2),(3,2),(4,2),(1,3),(1,4)\}$.
We prove three results concerning the existence of Bohr sets in threefold sumsets. More precisely, letting G be a countable discrete abelian group and $\phi _1, \phi _2, \phi _3: G \to G$ be commuting endomorphisms whose images have finite indices, we show that
(1) If $A \subset G$ has positive upper Banach density and $\phi _1 + \phi _2 + \phi _3 = 0$, then $\phi _1(A) + \phi _2(A) + \phi _3(A)$ contains a Bohr set. This generalizes a theorem of Bergelson and Ruzsa in $\mathbb {Z}$ and a recent result of the first author.
(2) For any partition $G = \bigcup _{i=1}^r A_i$, there exists an $i \in \{1, \ldots , r\}$ such that $\phi _1(A_i) + \phi _2(A_i) - \phi _2(A_i)$ contains a Bohr set. This generalizes a result of the second and third authors from $\mathbb {Z}$ to countable abelian groups.
(3) If $B, C \subset G$ have positive upper Banach density and $G = \bigcup _{i=1}^r A_i$ is a partition, $B + C + A_i$ contains a Bohr set for some $i \in \{1, \ldots , r\}$. This is a strengthening of a theorem of Bergelson, Furstenberg and Weiss.
All results are quantitative in the sense that the radius and rank of the Bohr set obtained depends only on the indices $[G:\phi _j(G)]$, the upper Banach density of A (in (1)), or the number of sets in the given partition (in (2) and (3)).
A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series $f(A) = \sum _{a\in A}1/(a \log a)$ is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative.
As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
We show that the first-order logical theory of the binary overlap-free words (and, more generally, the $\alpha $-free words for rational $\alpha $, $2 < \alpha \leq 7/3$), is decidable. As a consequence, many results previously obtained about this class through tedious case-based proofs can now be proved “automatically,” using a decision procedure, and new claims can be proved or disproved simply by restating them as logical formulas.
The integrality of the numbers $A_{n,m}={(2n)!(2m)!}/{n!m!(n+m)!}$ was observed by Catalan as early as 1874 and Gessel named $A_{n,m}$ the super Catalan numbers. The positivity of the q-super Catalan numbers (q-analogue of the super Catalan numbers) was investigated by Warnaar and Zudilin [‘A q-rious positivity’, Aequationes Math.81 (2011), 177–183]. We prove the divisibility of sums of q-super Catalan numbers, which establishes a q-analogue of Apagodu’s congruence involving super Catalan numbers.
Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$. We show that for every initial value $x_1\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+1}=\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic. Similarly, for all initial values $x_1,x_2\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+2}=\varphi (x_{n+1})+\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic, provided that k is even.
Let $d \ge 3$ be an integer and let $P \in \mathbb{Z}[x]$ be a polynomial of degree d whose Galois group is $S_d$. Let $(a_n)$ be a non-degenerate linearly recursive sequence of integers which has P as its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the lower density of the set of primes which divide at least one non-zero element of the sequence $(a_n)$ is positive.