To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kam Cheong Au [‘Wilf–Zeilberger seeds and non-trivial hypergeometric series’, Journal of Symbolic Computation130 (2025), Article no. 102241] discovered a powerful methodology for finding new Wilf–Zeilberger (WZ) pairs. He calls it WZ seeds and gives numerous examples of applications to proving longstanding conjectural identities for reciprocal powers of $\pi $ and their duals for Dirichlet L-values. In this note, we explain how a modification of Au’s WZ pairs together with a classical analytic argument yields simpler proofs of these results. We illustrate our method with examples elaborated with assistance of Maple code that we have developed.
For a wide class of integer linear recurrence sequences $(u(n))_{n=1}^\infty $, we give an upper bound on the number of s-tuples $\left (n_1, \ldots , n_s\right ) \in \left ({\mathbb Z}\cap [M+1,M+ N]\right )^s$ such that the corresponding elements $u(n_1), \ldots , u(n_s)$ in the sequence are multiplicatively dependent.
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
We construct skew corner-free subsets of $[n]^2$ of size $n^2\exp(\!-O(\sqrt{\log n}))$, thereby improving on recent bounds of the form $\Omega(n^{5/4})$ obtained by Pohoata and Zakharov. We also prove that any such set has size at most $O(n^2(\log n)^{-c})$ for some absolute constant $c \gt 0$. This improves on the previously best known upper bound $O(n^2(\log\log n)^{-c})$, coming from Shkredov’s work on the corners theorem.
It was asked by E. Szemerédi if, for a finite set $A\subset {\mathbb {Z}}$, one can improve estimates for $\max \{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors, that is, each $a\in A$ satisfies $\omega (a)\leq k$. In this paper we show that this maximum is at least of order $|A|^{\frac {5}{3}-o_\epsilon (1)}$ provided $k\leq (\log |A|)^{1-\varepsilon }$ for any $\varepsilon \gt 0$. In fact, this will follow from an estimate for additive energy which is best possible up to factors of size $|A|^{o(1)}$.
Green and Tao’s arithmetic regularity lemma and counting lemma together apply to systems of linear forms which satisfy a particular algebraic criterion known as the ‘flag condition’. We give an arithmetic regularity lemma and counting lemma which apply to all systems of linear forms.
In this article, we investigate the multiplicative structure of a shifted multiplicative subgroup and its connections with additive combinatorics and the theory of Diophantine equations. Among many new results, we highlight our main contributions as follows. First, we show that if a nontrivial shift of a multiplicative subgroup G contains a product set $AB$, then $|A||B|$ is essentially bounded by $|G|$, refining a well-known consequence of a classical result by Vinogradov. Second, we provide a sharper upper bound of $M_k(n)$, the largest size of a set such that each pairwise product of its elements is n less than a kth power, refining the recent result of Dixit, Kim, and Murty. One main ingredient in our proof is the first non-trivial upper bound on the maximum size of a generalized Diophantine tuple over a finite field. In addition, we determine the maximum size of an infinite family of generalized Diophantine tuples over finite fields with square order, which is of independent interest. We also make significant progress toward a conjecture of Sárközy on the multiplicative decompositions of shifted multiplicative subgroups. In particular, we prove that for almost all primes p, the set $\{x^2-1: x \in {\mathbb F}_p^*\} \setminus \{0\}$ cannot be decomposed as the product of two sets in ${\mathbb F}_p$ non-trivially.
We address a core partition regularity problem in Ramsey theory by proving that every finite coloring of the positive integers contains monochromatic Pythagorean pairs (i.e., $x,y\in {\mathbb N}$ such that $x^2\pm y^2=z^2$ for some $z\in {\mathbb N}$). We also show that partitions generated by level sets of multiplicative functions taking finitely many values always contain Pythagorean triples. Our proofs combine known Gowers uniformity properties of aperiodic multiplicative functions with a novel and rather flexible approach based on concentration estimates of multiplicative functions.
Let C and W be two integer sets. If $C+W=\mathbb {Z}$, then we say that C is an additive complement to W. If no proper subset of C is an additive complement to W, then we say that C is a minimal additive complement to W. We study the existence of a minimal additive complement to $W=\{w_i\}_{i=1}^{\infty}$ when W is not eventually periodic and $w_{i+1}-w_{i}\in \{2,3\}$ for all i.
The triangle removal states that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $\delta (\varepsilon )n^3$ triangles. Unfortunately, there are no sensible bounds on the order of growth of $\delta (\varepsilon )$, and at any rate, it is known that $\delta (\varepsilon )$ is not polynomial in $\varepsilon $. Csaba recently obtained an asymmetric variant of the triangle removal, stating that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $2^{-\operatorname {\mathrm {poly}}(1/\varepsilon )}\cdot n^5$ copies of $C_5$. To this end, he devised a new variant of Szemerédi’s regularity lemma. We obtain the following results:
• We first give a regularity-free proof of Csaba’s theorem, which improves the number of copies of $C_5$ to the optimal number $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^5$.
• We say that H is $K_3$-abundant if every graph containing $\varepsilon n^2$ edge-disjoint triangles has $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^{\lvert V(H)\rvert }$ copies of H. It is easy to see that a $K_3$-abundant graph must be triangle-free and tripartite. Given our first result, it is natural to ask if all triangle-free tripartite graphs are $K_3$-abundant. Our second result is that assuming a well-known conjecture of Ruzsa in additive number theory, the answer to this question is negative.
Our proofs use a mix of combinatorial, number-theoretic, probabilistic and Ramsey-type arguments.
Let $\mathbb{N}$ be the set of all non-negative integers. For any integer r and m, let $r+m\mathbb{N}=\{r+mk: k\in\mathbb{N}\}$. For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_{S}(n)$ denote the number of solutions of the equation $n=s+s'$ with $s, s'\in S$ and $s \lt s'$. Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$ and $2\mid r_{1}$. In this paper, we prove that there exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ if and only if there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1, m=2^{2l+2}-2$.
In [15], using methods from ergodic theory, a longstanding conjecture of Erdős (see [5, Page 305]) about sumsets in large subsets of the natural numbers was resolved. In this paper, we extend this result to several important classes of amenable groups, including all finitely generated virtually nilpotent groups and all abelian groups $(G,+)$ with the property that the subgroup $2G := \{g+g : g\in G\}$ has finite index. We prove that in any group G from the above classes, any $A\subset G$ with positive upper Banach density contains a shifted product set of the form $\{tb_ib_j\colon i<j\}$, for some infinite sequence $(b_n)_{n\in \mathbb {N}}$ and some $t\in G$. In fact, we show this result for all amenable groups that posses a property which we call square absolute continuity. Our results provide answers to several questions and conjectures posed in [13].
For an integer $k \geq 2$, let $P_{n}^{(k)}$ be the k-generalised Pell sequence, which starts with $0, \ldots ,0,1$ (k terms), and each term thereafter is given by the recurrence $P_{n}^{(k)} = 2 P_{n-1}^{(k)} +P_{n-2}^{(k)} +\cdots +P_{n-k}^{(k)}$. We search for perfect powers, which are sums or differences of two k-generalised Pell numbers.
We establish the restricted sumset analog of the celebrated conjecture of Sárközy on additive decompositions of the set of nonzero squares over a finite field. More precisely, we show that if $q>13$ is an odd prime power, then the set of nonzero squares in $\mathbb {F}_q$ cannot be written as a restricted sumset $A \hat {+} A$, extending a result of Shkredov. More generally, we study restricted sumsets in multiplicative subgroups over finite fields as well as restricted sumsets in perfect powers (over integers) motivated by a question of Erdős and Moser. We also prove an analog of van Lint–MacWilliams’ conjecture for restricted sumsets, which appears to be the first analogue of Erdős--Ko–Rado theorem in a family of Cayley sum graphs.
In his proof of the irrationality of $\zeta (3)$ and $\zeta (2)$, Apéry defined two integer sequences through $3$-term recurrences, which are known as the famous Apéry numbers. Zagier, Almkvist–Zudilin, and Cooper successively introduced the other $13$ sporadic sequences through variants of Apéry’s $3$-term recurrences. All of the $15$ sporadic sequences are called Apéry-like sequences. Motivated by Gessel’s congruences mod $24$ for the Apéry numbers, we investigate congruences of the form $u_n\equiv \alpha ^n \ \pmod {N_{\alpha }}~(\alpha \in \mathbb {Z},N_{\alpha }\in \mathbb {N}^{+})$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. Let $N_{\alpha }$ be the largest positive integer such that $u_n\equiv \alpha ^n\ \pmod {N_{\alpha }}$ for all non-negative integers n. We determine the values of $\max \{N_{\alpha }|\alpha \in \mathbb {Z}\}$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. The binomial transforms of Apéry-like sequences provide us a unified approach to this type of congruences for Apéry-like sequences.
We develop a generalisation of the square sieve of Heath-Brown and use it to give an alternate proof of one of the large sieve inequalities in our previous paper [‘A large sieve inequality for characters to quadratic moduli’, Preprint, https://web.maths.unsw.edu.au/~ccorrigan/preprint6.pdf].
An extension of Szemerédi’s theorem is proved for sets of positive density in approximate lattices in general locally compact and second countable abelian groups. As a consequence, we establish a recent conjecture of Klick, Strungaru and Tcaciuc. Via a novel version of Furstenberg’s correspondence principle, which should be of independent interest, we show that our Szemerédi theorems can be deduced from a general transverse multiple recurrence theorem, which we establish using a recent work of Austin [Non-conventional ergodic averages for several commuting actions of an amenable group. J. Anal. Math.130 (2016), 243–274].
Let p be a prime, $q=p^n$, and $D \subset \mathbb {F}_q^*$. A celebrated result of McConnel states that if D is a proper subgroup of $\mathbb {F}_q^*$, and $f:\mathbb {F}_q \to \mathbb {F}_q$ is a function such that $(f(x)-f(y))/(x-y) \in D$ whenever $x \neq y$, then $f(x)$ necessarily has the form $ax^{p^j}+b$. In this notes, we give a sufficient condition on D to obtain the same conclusion on f. In particular, we show that McConnel’s theorem extends if D has small doubling.
for all integers $n\geq k$, where $a_1,\dots ,a_k,x_0,\dots , x_{k-1}\in \mathbb {Z},$ with $a_k\neq 0$. In 2017, Sanna posed an open question to classify primes p for which the quotient set of $(x_n)_{n\geq 0}$ is dense in $\mathbb {Q}_p$. In a recent paper, we showed that if the characteristic polynomial of the recurrence sequence has a root $\pm \alpha $, where $\alpha $ is a Pisot number and if p is a prime such that the characteristic polynomial of the recurrence sequence is irreducible in $\mathbb {Q}_p$, then the quotient set of $(x_n)_{n\geq 0}$ is dense in $\mathbb {Q}_p$. In this article, we answer the problem for certain linear recurrence sequences whose characteristic polynomials are reducible over $\mathbb {Q}$.