To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give effective finiteness results for the power values of polynomials with coefficients composed of a fixed finite set of primes; in particular, of Littlewood polynomials.
We prove that if $s\ge 2$ is a fixed integer, then the equation $ns^n+1=(b^m-1)/(b-1)$ has only finitely many positive integer solutions $(n,b,m)$ with $b\ge 2$ and $m\ge 3$. When $s=2$, it has no solution.
In the present article, we study the following problem. Let $\boldsymbol {G}$ be a linear algebraic group over $\mathbb {Q}$, let $\Gamma$ be an arithmetic lattice, and let $\boldsymbol {H}$ be an observable $\mathbb {Q}$-subgroup. There is a $H$-invariant measure $\mu _H$ supported on the closed submanifold $H\Gamma /\Gamma$. Given a sequence $(g_n)$ in $G$, we study the limiting behavior of $(g_n)_*\mu _H$ under the weak-$*$ topology. In the non-divergent case, we give a rather complete classification. We further supplement this by giving a criterion of non-divergence and prove non-divergence for arbitrary sequence $(g_n)$ for certain large $\boldsymbol {H}$. We also discuss some examples and applications of our result. This work can be viewed as a natural extension of the work of Eskin–Mozes–Shah and Shapira–Zheng.
We generalise two quartic surfaces studied by Swinnerton-Dyer to give two infinite families of diagonal quartic surfaces which violate the Hasse principle. Standard calculations of Brauer–Manin obstructions are exhibited.
In the 1993 Western Number Theory Conference, Richard Guy proposed Problem 93:31, which asks for integers n representable by ${(x+y+z)^3}/{xyz}$, where $x,\,y,\,z$ are integers, preferably with positive integer solutions. We show that the representation $n={(x+y+z)^3}/{xyz}$ is impossible in positive integers $x,\,y,\,z$ if $n=4^{k}(a^2+b^2)$, where $k,\,a,\,b\in \mathbb {Z}^{+}$ are such that $k\geq 3$ and $2\nmid a+b$.
for integers $n,s,y$ and m. All solutions to this equation are known for $m>2$ and $s \in \{3,5,6,8,20 \}$. We consider the case $s=10$, that of decagonal numbers. Using a descent argument and the modular method, we prove that the only decagonal number greater than 1 expressible as a perfect mth power with $m>1$ is $\mathcal {P}_{10}(3) = 3^3$.
For any fixed nonzero integer h, we show that a positive proportion of integral binary quartic forms F do locally everywhere represent h, but do not globally represent h. We order classes of integral binary quartic forms by the two generators of their ring of ${\rm GL}_{2}({\mathbb Z})$-invariants, classically denoted by I and J.
We find all integer solutions to the equation $x^2+5^a\cdot 13^b\cdot 17^c=y^n$ with $a,\,b,\,c\geq 0$, $n\geq 3$, $x,\,y>0$ and $\gcd (x,\,y)=1$. Our proof uses a deep result about primitive divisors of Lucas sequences in combination with elementary number theory and computer search.
We refine a previous construction by Akhtari and Bhargava so that, for every positive integer m, we obtain a positive proportion of Thue equations F(x, y) = h that fail the integral Hasse principle simultaneously for every positive integer h less than m. The binary forms F have fixed degree ≥ 3 and are ordered by the absolute value of the maximum of the coefficients.
We show that in a parametric family of linear recurrence sequences $a_1(\alpha ) f_1(\alpha )^n + \cdots + a_k(\alpha ) f_k(\alpha )^n$ with the coefficients $a_i$ and characteristic roots $f_i$, $i=1, \ldots ,k$, given by rational functions over some number field, for all but a set of elements $\alpha $ of bounded height in the algebraic closure of ${\mathbb Q}$, the Skolem problem is solvable, and the existence of a zero in such a sequence can be effectively decided. We also discuss several related questions.
Let K be an algebraic number field. We investigate the K-rational distance problem and prove that there are infinitely many nonisomorphic cubic number fields and a number field of degree n for every $n\geq 2$ in which there is a point in the plane of a unit square at K-rational distances from the four vertices of the square.
Aigner showed in 1934 that nontrivial quadratic solutions to $x^4 + y^4 = 1$ exist only in $\mathbb Q(\sqrt {-7})$. Following a method of Mordell, we show that nontrivial quadratic solutions to $x^4 + 2^ny^4 = 1$ arise from integer solutions to the equations $X^4 \pm 2^nY^4 = Z^2$ investigated in 1853 by V. A. Lebesgue.
Jeśmanowicz conjectured that $(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$, where n is a positive integer and f, g are positive integers such that $f>g$, $\gcd (\kern1.5pt f,g)=1$ and $f \not \equiv g\pmod 2$. Using Baker’s method, we prove that: (i) if $n>1$, $f \ge 98$ and $g=1$, then $(*)$ has no positive integer solutions $(x,y,z)$ with $x>z>y$; and (ii) if $n>1$, $f=2^rs^2$ and $g=1$, where r, s are positive integers satisfying$(**)\; 2 \nmid s$ and $s<2^{r/2}$, then $(*)$ has no positive integer solutions $(x,y,z)$ with $y>z>x$. Thus, Jeśmanowicz’ conjecture is true if $f=2^rs^2$ and $g=1$, where r, s are positive integers satisfying $(**)$.
We show that the set of natural numbers has an exponential diophantine definition in the rationals. It follows that the corresponding decision problem is undecidable.
We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form $x^{4}-y^{4}$, through appeal to Frey curves of various signatures and related techniques.
Erdös and Zaremba showed that $ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$, γ being Euler’s constant, where $\Phi(n)=\sum_{d|n} \frac{\log d}{d}$.
We extend this result to the function $\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$ and some other functions. We show that $ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma$. The proof requires a new approach. As an application, we prove that for any $\eta>1$, any finite sequence of reals $\{c_k, k\in K\}$, $\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$, where C(η) depends on η only. This improves a recent result obtained by the author.
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley.
We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
We show, under some natural restrictions, that some semigroup orbits of polynomials cannot contain too many elements of small multiplicative order modulo a large prime $p$, extending previous work of Shparlinski [‘Multiplicative orders in orbits of polynomials over finite fields’, Glasg. Math. J.60(2) (2018), 487–493].
Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.
We study the generalized Fermat equation $x^{2}+y^{3}=z^{p}$, to be solved in coprime integers, where $p\geqslant 7$ is prime. Modularity and level-lowering techniques reduce the problem to the determination of the sets of rational points satisfying certain 2-adic and 3-adic conditions on a finite set of twists of the modular curve $X(p)$. We develop new local criteria to decide if two elliptic curves with certain types of potentially good reduction at 2 and 3 can have symplectically or anti-symplectically isomorphic $p$-torsion modules. Using these criteria we produce the minimal list of twists of $X(p)$ that have to be considered, based on local information at 2 and 3; this list depends on $p\hspace{0.2em}{\rm mod}\hspace{0.2em}24$. We solve the equation completely when $p=11$, which previously was the smallest unresolved $p$. One new ingredient is the use of the ‘Selmer group Chabauty’ method introduced by the third author, applied in an elliptic curve Chabauty context, to determine relevant points on $X_{0}(11)$ defined over certain number fields of degree 12. This result is conditional on the generalized Riemann hypothesis, which is needed to show correctness of the computation of the class groups of five specific number fields of degree 36. We also give some partial results for the case $p=13$. The source code for the various computations is supplied as supplementary material with the online version of this article.