$x^2+y^2=z^3$
$x^4+y^4=z^4$ OVER QUADRATIC EXTENSIONS OF
${\mathbb {Q}}(\zeta _8)(T_1,T_2,\ldots ,T_n)$
$D(n)$
$\mathrm{GL}_{m}$
$(P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m$
$abc$ conjecture