We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we use Dedekind’s eta function to prove a congruence relation between the number of representations by binary quadratic forms of discriminant
$-31$
and Fourier coefficients of a weight
$16$
cusp form. Our result is analogous to the classical result concerning Ramanujan’s tau function and binary quadratic forms of discriminant
$-23$
.
For a subset S of nonnegative integers and a vector
$\mathbf {a}=(a_1,\ldots ,a_k)$
of positive integers, define the set
$V^{\prime }_S(\mathbf {a})=\{ a_1s_1+\cdots +a_ks_k : s_i\in S\}-\{0\}$
. For a positive integer n, let
$\mathcal T(n)$
be the set of integers greater than or equal to n. We consider the problem of finding all vectors
$\mathbf {a}$
satisfying
$V^{\prime }_S(\mathbf {a})=\mathcal T(n)$
when S is the set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the case when S is the set of triangular numbers.
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.
The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over
${\mathbb{Q}}$
in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient$\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.
Let K/k be an extension of number fields. We describe theoretical results and computational methods for calculating the obstruction to the Hasse norm principle for K/k and the defect of weak approximation for the norm one torus
\[R_{K/k}^1{\mathbb{G}_m}\]
. We apply our techniques to give explicit and computable formulae for the obstruction to the Hasse norm principle and the defect of weak approximation when the normal closure of K/k has symmetric or alternating Galois group.
Z.-W. Sun [‘Refining Lagrange’s four-square theorem’, J. Number Theory175 (2017), 169–190] conjectured that
every positive integer n can be written as
$ x^2+y^2+z^2+w^2\ (x,y,z,w\in \mathbb {N}=\{0,1,\ldots \})$
with
$x+3y$
a square and also as
$n=x^2+y^2+z^2+w^2\ (x,y,z,w \in \mathbb {Z})$
with
$x+3y\in \{4^k:k\in \mathbb {N}\}$
. In this paper, we confirm these conjectures via the arithmetic theory of ternary quadratic forms.
Let
$K/F$
be an unramified quadratic extension of a non-Archimedean local field. In a previous work [1], we proved a formula for the intersection number on Lubin–Tate spaces. The main result of this article is an algorithm for computation of this formula in certain special cases. As an application, we prove the linear Arithmetic Fundamental Lemma for
$ \operatorname {{\mathrm {GL}}}_4$
with the unit element in the spherical Hecke Algebra.
Let E(s, Q) be the Epstein zeta function attached to a positive definite quadratic form of discriminant D < 0, such that h(D) ≥ 2, where h(D) is the class number of the imaginary quadratic field ${\mathbb{Q}} (\sqrt D)$. We denote by ${N_E}({\sigma _1},{\sigma _2},T)$ the number of zeros of $[E(s,Q)$ in the rectangle ${\sigma _1} < {\mathop{\rm Re}\nolimits} (s) \le {\sigma _2}$ and $T \le {\mathop{\rm Im}\nolimits} (s) \le 2T$, where $1/2 < {\sigma _1} < {\sigma _2} < 1$ are fixed real numbers. In this paper, we improve the asymptotic formula of Gonek and Lee for ${N_E}({\sigma _1},{\sigma _2},T)$, obtaining a saving of a power of log T in the error term.
Let $E/\mathbb {Q}$ be a number field of degree $n$. We show that if $\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$ then the fraction of class group characters for which the Hecke $L$-function does not vanish at the central point is $\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$. The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$ associated to the maximal order of $E$, and the escape of mass of the torus orbit associated to the trivial ideal class.
We find and prove a class of congruences modulo 4 for eta-products associated with certain ternary quadratic forms. This study was inspired by similar conjectured congruences modulo 4 for certain mock theta functions.
A (positive definite and integral) quadratic form is said to be prime-universal if it represents all primes. Recently, Doyle and Williams [‘Prime-universal quadratic forms
$ax^2+by^2+cz^2$
and
$ax^2+by^2+cz^2+dw^2$
’, Bull. Aust. Math. Soc.101 (2020), 1–12] classified all prime-universal diagonal ternary quadratic forms and all prime-universal diagonal quaternary quadratic forms under two conjectures. We classify all prime-universal diagonal quadratic forms regardless of rank, and prove the so-called 67-theorem for a diagonal quadratic form to be prime-universal.
We study totally positive definite quadratic forms over the ring of integers $\mathcal {O}_K$ of a totally real biquadratic field $K=\mathbb {Q}(\sqrt {m}, \sqrt {s})$. We restrict our attention to classic forms (i.e. those with all non-diagonal coefficients in $2\mathcal {O}_K$) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of $\mathcal {O}_K$). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of $\mathcal {O}_K$; we prove several new results about their properties.
Symplectic finite semifields can be used to construct nonlinear binary codes of Kerdock type (i.e., with the same parameters of the Kerdock codes, a subclass of Delsarte–Goethals codes). In this paper, we introduce nonbinary Delsarte–Goethals codes of parameters
$(q^{m+1}\ ,\ q^{m(r+2)+2}\ ,\ {\frac{q-1}{q}(q^{m+1}-q^{\frac{m+1}{2}+r})})$
over a Galois field of order
$q=2^l$
, for all
$0\le r\le\frac{m-1}{2}$
, with m ≥ 3 odd, and show the connection of this construction to finite semifields.
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley.
We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
A bilinear map $\varPhi :\mathbb {R}^r\times \mathbb {R}^s\to \mathbb {R}^n$ is nonsingular if $\varPhi (\overrightarrow {a},\overrightarrow {b})=\overrightarrow {0}$ implies $\overrightarrow {a}=\overrightarrow {0}$ or $\overrightarrow {b}=\overrightarrow {0}$. These maps are of interest to topologists, and are instrumental for the study of vector bundles over real projective spaces. The main purpose of this paper is to produce examples of such maps in the range $24\leqslant r\leqslant 32,\ 24\leqslant s\leqslant 32,$ using the arithmetic of octonions (otherwise known as Cayley numbers) as an effective tool. While previous constructions in lower dimensional cases use ad hoc techniques, our construction follows a systematic procedure and subsumes those techniques into a uniform perspective.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.