We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend field patching to the setting of Berkovich analytic geometry and use it to prove a local–global principle over function fields of analytic curves with respect to completions. In the context of quadratic forms, we combine it with sufficient conditions for local isotropy over a Berkovich curve to obtain applications on the $u$-invariant. The patching method we adapt was introduced by Harbater and Hartmann [Patching over fields, Israel J. Math. 176 (2010), 61–107] and further developed by these two authors and Krashen [Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231–263]. The results presented in this paper generalize those of Harbater, Hartmann, and Krashen [Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231–263] on the local–global principle and quadratic forms.
A positive-definite diagonal quadratic form $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}\;(a_{1},\ldots ,a_{n}\in \mathbb{N})$ is said to be prime-universal if it is not universal and for every prime $p$ there are integers $x_{1},\ldots ,x_{n}$ such that $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}=p$. We determine all possible prime-universal ternary quadratic forms $ax^{2}+by^{2}+cz^{2}$ and all possible prime-universal quaternary quadratic forms $ax^{2}+by^{2}+cz^{2}+dw^{2}$. The prime-universal ternary forms are completely determined. The prime-universal quaternary forms are determined subject to the validity of two conjectures. We make no use of a result of Bhargava concerning quadratic forms representing primes which is stated but not proved in the literature.
We prove the analog for the $K$-theory of forms of the $Q=+$ theorem in algebraic $K$-theory. That is, we show that the $K$-theory of forms defined in terms of an $S_{\bullet }$-construction is a group completion of the category of quadratic spaces for form categories in which all admissible exact sequences split. This applies for instance to quadratic and hermitian forms defined with respect to a form parameter.
For any prime number $p$ and field $k$, we characterize the $p$-retract rationality of an algebraic $k$-torus in terms of its character lattice. We show that a $k$-torus is retract rational if and only if it is $p$-retract rational for every prime $p$, and that the Noether problem for retract rationality for a group of multiplicative type $G$ has an affirmative answer for $G$ if and only if the Noether problem for $p$-retract rationality for $G$ has a positive answer for all $p$. For every finite set of primes $S$ we give examples of tori that are $p$-retract rational if and only if $p\notin S$.
In this paper we study the subgroup of the Picard group of Voevodsky’s category of geometric motives $\operatorname{DM}_{\text{gm}}(k;\mathbb{Z}/2)$ generated by the reduced motives of affine quadrics. Our main tools here are the functors of Bachmann [On the invertibility of motives of affine quadrics, Doc. Math. 22 (2017), 363–395], but we also provide an alternative method. We show that the group in question can be described in terms of indecomposable direct summands in the motives of projective quadrics over $k$. In particular, we describe all the relations among the reduced motives of affine quadrics. We also extend the criterion of motivic equivalence of projective quadrics.
Nous montrons, pour une grande famille de propriétés des espaces homogènes, qu’une telle propriété vaut pour tout espace homogène d’un groupe linéaire connexe dès qu’elle vaut pour les espaces homogènes de $\text{SL}_{n}$ à stabilisateur fini. Nous réduisons notamment à ce cas particulier la vérification d’une importante conjecture de Colliot-Thélène sur l’obstruction de Brauer–Manin au principe de Hasse et à l’approximation faible. Des travaux récents de Harpaz et Wittenberg montrent que le résultat principal s’applique également à la conjecture analogue (dite conjecture (E)) pour les zéro-cycles.
We prove two results about the width of words in $\operatorname{SL}_{n}(\mathbb{Z})$. The first is that, for every $n\geqslant 3$, there is a constant $C(n)$ such that the width of any word in $\operatorname{SL}_{n}(\mathbb{Z})$ is less than $C(n)$. The second result is that, for any word $w$, if $n$ is big enough, the width of $w$ in $\operatorname{SL}_{n}(\mathbb{Z})$ is at most 87.
Derived equivalences of twisted K3 surfaces induce twisted Hodge isometries between them; that is, isomorphisms of their cohomologies which respect certain natural lattice structures and Hodge structures. We prove a criterion for when a given Hodge isometry arises in this way. In particular, we describe the image of the representation which associates to any autoequivalence of a twisted K3 surface its realization in cohomology: this image is a subgroup of index $1$ or $2$ in the group of all Hodge isometries of the twisted K3 surface. We show that both indices can occur.
Let $K$ be a two-dimensional global field of characteristic $\neq 2$ and let $V$ be a divisorial set of places of $K$. We show that for a given $n\geqslant 5$, the set of $K$-isomorphism classes of spinor groups $G=\operatorname{Spin}_{n}(q)$ of nondegenerate $n$-dimensional quadratic forms over $K$ that have good reduction at all $v\in V$ is finite. This result yields some other finiteness properties, such as the finiteness of the genus $\mathbf{gen}_{K}(G)$ and the properness of the global-to-local map in Galois cohomology. The proof relies on the finiteness of the unramified cohomology groups $H^{i}(K,\unicode[STIX]{x1D707}_{2})_{V}$ for $i\geqslant 1$ established in the paper. The results for spinor groups are then extended to some unitary groups and to groups of type $\mathsf{G}_{2}$.
Let K be an imaginary quadratic field different from $\open{Q}(\sqrt {-1})$ and $\open{Q}(\sqrt {-3})$. For a positive integer N, let KN be the ray class field of K modulo $N {\cal O}_K$. By using the congruence subgroup ± Γ1(N) of SL2(ℤ), we construct an extended form class group whose operation is basically the Dirichlet composition, and explicitly show that this group is isomorphic to the Galois group Gal(KN/K). We also present an algorithm to find all distinct form classes and show how to multiply two form classes. As an application, we describe Gal(KNab/K) in terms of these extended form class groups for which KNab is the maximal abelian extension of K unramified outside prime ideals dividing $N{\cal O}_K$.
We aim to re-prove a theorem conjectured by Gauss, namely there are exactly nine imaginary quadratic fields $\mathbf{Q}(\sqrt{-q})$ with class number one: specifically the list is $q\in \{3,4,7,8,11,19,43,67,163\}$. Our method initially follows an idea of Goldfeld, but rather than using an elliptic curve of analytic rank three (provided by the Gross–Zagier theorem), we instead use an elliptic curve of analytic rank two, where this $L$-function vanishing can be proven by modular symbols rather than a difficult height formula. It is already clear that Goldfeld’s work yields a constant lower bound for the class number by such means, but unfortunately it seems that even for the best choice of elliptic curve this numerical constant is less than 1, unless one can show non-trivial cancellation in the $L$-function coefficients restricted to values taken by quadratic forms. To show the latter, we consider a specific analytic rank-two elliptic curve with complex multiplication by $\mathbf{Q}(\sqrt{-1})$, and then by adapting a result of Hooley’s regarding equi-distrbution of roots of a quadratic polynomial to varying moduli, are able to show that there is indeed sufficient coefficient cancellation, giving an effective resolution of class number one. As we use various aspects of the principal form, our proof seems inapplicable for larger class numbers. We also comment on the possibility of using spectral techniques (following Templier and Tsimerman) to show the desired coefficient cancellation, though postpone the details of this to elsewhere.
In this paper, we improve the moment estimates for the gaps between numbers that can be represented as a sum of two squares of integers. We consider a certain sum of Bessel functions and prove the upper bound for its mean value. This bound provides estimates for the $\unicode[STIX]{x1D6FE}$th moments of gaps for all $\unicode[STIX]{x1D6FE}\leqslant 2$.
Extending the notion of regularity introduced by Dickson in 1939, a positive definite ternary integral quadratic form is said to be spinor regular if it represents all the positive integers represented by its spinor genus (that is, all positive integers represented by any form in its spinor genus). Jagy conducted an extensive computer search for primitive ternary quadratic forms that are spinor regular, but not regular, resulting in a list of 29 such forms. In this paper, we will prove that there are no additional forms with this property.
Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.
Let $G$ be an orthogonal, symplectic or unitary group over a non-archimedean local field of odd residual characteristic. This paper concerns the study of the “wild part” of an irreducible smooth representation of $G$, encoded in its “semisimple character”. We prove two fundamental results concerning them, which are crucial steps toward a complete classification of the cuspidal representations of $G$. First we introduce a geometric combinatorial condition under which we prove an “intertwining implies conjugacy” theorem for semisimple characters, both in $G$ and in the ambient general linear group. Second, we prove a Skolem–Noether theorem for the action of $G$ on its Lie algebra; more precisely, two semisimple elements of the Lie algebra of $G$ which have the same characteristic polynomial must be conjugate under an element of $G$ if there are corresponding semisimple strata which are intertwined by an element of $G$.
We show that over any field $F$ of characteristic 2 and 2-rank $n$, there exist $2^{n}$ bilinear $n$-fold Pfister forms that have no slot in common. This answers a question of Becher [‘Triple linkage’, Ann.$K$-Theory, to appear] in the negative. We provide an analogous result also for quadratic Pfister forms.
Let $q$ be an anisotropic quadratic form defined over a general field $F$. In this article, we formulate a new upper bound for the isotropy index of $q$ after scalar extension to the function field of an arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in two key cases: (i) the case where $\text{char}(F)\neq 2$, and (ii) the case where $\text{char}(F)=2$ and $q$ is quasilinear (i.e., diagonalizable). The two cases are treated separately using completely different approaches, the first being algebraic–geometric, and the second being purely algebraic.
We show that the set of real polynomials in two variables that are sums of three squares of rational functions is dense in the set of those that are positive semidefinite. We also prove that the set of real surfaces in $\mathbb{P}^{3}$ whose function field has level 2 is dense in the set of those that have no real points.
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.