We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
In his Tata Lecture Notes, Igusa conjectured the validity of a strong uniformity in the decay of complete exponential sums modulo powers of a prime number and determined by a homogeneous polynomial. This was proved for non-degenerate forms by Denef–Sperber and then by Cluckers for weighted homogeneous non-degenerate forms. In a recent preprint, Wright has proved this for degenerate binary forms. We give a different proof of Wright’s result that seems to be simpler and relies upon basic estimates for exponential sums mod $p$as well as a type of resolution of singularities with good reduction in the sense of Denef.
We prove upper bounds for Hecke–Laplace eigenfunctions on certain Riemannian manifolds $X$ of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are $d$-fold products of $2$-spheres or $3$-spheres, realized as adelic quotients of quaternion algebras over totally real number fields. In the volume aspect we prove a (‘Weyl-type’) saving of $\mathrm{vol} \hspace{0.167em} (X)^{- 1/ 6+ \varepsilon } $.
We prove analogues of several well-known results concerning rational maps between quadrics for the class of so-called quasilinear p-hypersurfaces. These hypersurfaces are nowhere smooth over the base field, so many of the geometric methods which have been successfully applied to the study of projective homogeneous varieties over fields cannot be used. We are therefore forced to take an alternative approach, which is partly facilitated by the appearance of several non-traditional features in the study of these objects from an algebraic perspective. Our main results were previously known for the class of quasilinear quadrics. We provide new proofs here, because the original proofs do not immediately generalise for quasilinear hypersurfaces of higher degree.
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f:X→Y of integral schemes of finite type the dimension of every fiber of f is at least dim X−dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f:𝒳→𝒴, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
Let k be a positive integer such that k≡3 mod 4, and let N be a positive square-free integer. In this paper, we compute a basis for the two-dimensional subspace Sk/2(Γ0(4N),F) of half-integral weight modular forms associated, via the Shimura correspondence, to a newform F∈Sk−1(Γ0(N)), which satisfies . This is accomplished by using a result of Waldspurger, which allows one to produce a basis for the forms that correspond to a given F via local considerations, once a form in the Kohnen space has been determined.
Multirings are objects like rings but with multi-valued addition. In the present paper we extend results of E. Becker and others concerning orderings of higher level on fields and rings to orderings of higher level on hyperfields and multirings and, in the process of doing this, we establish higher level analogs of the results previously obtained by the second author. In particular, we introduce a class of multirings called ℓ-real reduced multirings, define a natural reflection A ⇝ Qℓ-red(A) from the category of multirings satisfying to the full subcategory of ℓ-real reduced multirings, and provide an elementary first-order description of these objects. The relationship between ℓ-real reduced hyperfields and the spaces of signatures defined by Mulcahy and Powers is also examined.
For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of ℚ-rank r, we construct a compact manifold by gluing together 2r copies of the Borel–Serre compactification of X. We apply the classical Lefschetz fixed point formula to and get formulas for the traces of Hecke operators ℋ acting on the cohomology of X. We allow twistings of ℋ by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G,η) . As an application, we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups.
Among the values of a binary quadratic form, there are many twins of fixed distance. This is shown in quantitative form. For quadratic forms of discriminant −4 or 8 a corresponding result is obtained for triplets.
In Gun and Ramakrishnan [‘On special values of certain Dirichlet L-functions’, Ramanujan J.15 (2008), 275–280], we gave expressions for the special values of certain Dirichlet L-function in terms of finite sums involving Jacobi symbols. In this note we extend our earlier results by giving similar expressions for two more special values of Dirichlet L-functions, namely L(−1,χm) and L(−2,χ−m′), where m,m′ are square-free integers with m≡1 mod 8 and m′≡3 mod 8 and χD is the Kronecker symbol . As a consequence, using the identities of Cohen [‘Sums involving the values at negative integers of L-functions of quadratic characters’, Math. Ann.217 (1975), 271–285], we also express the finite sums with Jacobi symbols in terms of sums involving divisor functions. Finally, we observe that the proof of Theorem 1.2 in Gun and Ramakrishnan (as above) is a direct consequence of Equation (24) in Gun, Manickam and Ramakrishnan [‘A canonical subspace of modular forms of half-integral weight’, Math. Ann.347 (2010), 899–916].
Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over ℚ. We show that X(ℚ) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
We show that a system of r quadratic forms over a 𝔭-adic field in at least 4r+1 variables will have a non-trivial zero as soon as the cardinality of the residue field is large enough. In contrast, the Ax–Kochen theorem [J. Ax and S. Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605–630] requires the characteristic to be large in terms of the degree of the field over ℚp. The proofs use a 𝔭-adic minimization technique, together with counting arguments over the residue class field, based on considerations from algebraic geometry.
If a positive definite Hermitian lattice represents all positive integers, we call it universal. Several mathematicians, including the author, have between them found 25 universal binary Hermitian lattices. But their ad hoc proofs are complicated. We give simple and unified proofs of universality.
Let R(n,θ) denote the number of representations of the natural number n as the sum of four squares, each composed only with primes not exceeding nθ/2. When θ>e−1/3 a lower bound for R(n,θ) of the expected order of magnitude is established, and when θ>365/592, it is shown that R(n,θ)>0 holds for large n. A similar result is obtained for sums of three squares. An asymptotic formula is obtained for the related problem of representing an integer as the sum of two squares and two squares composed of small primes, as above, for any fixed θ>0. This last result is the key to bound R(n,θ) from below.
This paper provides congruences between unstable and stable automorphic forms for the symplectic similitude group GSp(4). More precisely, we raise the level of certain CAP representations Π arising from classical modular forms. We first transfer Π to π on a suitable inner form G; this is achieved by θ-lifting. For π, we prove a precise level-raising result that is inspired by the work of Bellaiche and Clozel and which relies on computations of Schmidt. We thus obtain a congruent to π, with a local component that is irreducibly induced from an unramified twist of the Steinberg representation of the Klingen parabolic. To transfer back to GSp(4), we use Arthur’s stable trace formula. Since has a local component of the above type, all endoscopic error terms vanish. Indeed, by results due to Weissauer, we only need to show that such a component does not participate in the θ-correspondence with any GO(4); this is an exercise in using Kudla’s filtration of the Jacquet modules of the Weil representation. We therefore obtain a cuspidal automorphic representation of GSp(4), congruent to Π, which is neither CAP nor endoscopic. It is crucial for our application that we can arrange for to have vectors fixed by the non-special maximal compact subgroups at all primes dividing N. Since G is necessarily ramified at some prime r, we have to show a non-special analogue of the fundamental lemma at r. Finally, we give an application of our main result to the Bloch–Kato conjecture, assuming a conjecture of Skinner and Urban on the rank of the monodromy operators at the primes dividing N.
An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More generally, such failure of a local-global principle may occur for the representation of one integral quadratic form by another integral quadratic form. We show that many such examples may be accounted for by a Brauer–Manin obstruction for the existence of integral points on schemes defined over the integers. For several types of homogeneous spaces of linear algebraic groups, this obstruction is shown to be the only obstruction to the existence of integral points.
We study sums involving multiplicative functions that take values over a nonhomogenous Beatty sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to a given magnitude.
Generatingfunctions are used to derive formulas for the number of representations of a positive integer by each of the quadratic forms x12+x22+x32+2x42, x12+2x22+2x32+2x42, x12+x22+2x32+4x42 and x12+2x22+4x32+4x42. The formulas show that the number of representations by each form is always positive. Some of the analogous results involving sums of triangular numbers are also given.