We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In characteristic two, some criteria are obtained for a symmetric square-central element of a totally decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.
Let $R$ be a finite commutative ring of odd characteristic and let $V$ be a free $R$-module of finite rank. We classify symmetric inner products defined on $V$ up to congruence and find the number of such symmetric inner products. Additionally, if $R$ is a finite local ring, the number of congruent symmetric inner products defined on $V$ in each congruence class is determined.
Let $M$ be an irreducible holomorphic symplectic (hyperkähler) manifold. If $b_{2}(M)\geqslant 5$, we construct a deformation $M^{\prime }$ of $M$ which admits a symplectic automorphism of infinite order. This automorphism is hyperbolic, that is, its action on the space of real $(1,1)$-classes is hyperbolic. If $b_{2}(M)\geqslant 14$, similarly, we construct a deformation which admits a parabolic automorphism (and many other automorphisms as well).
We prove that spin groups act generically freely on various spinor modules, in the sense of group schemes and in a way that does not depend on the characteristic of the base field. As a consequence, we extend the surprising calculation of the essential dimension of spin groups and half-spin groups in characteristic zero by Brosnan et al. [Essential dimension, spinor groups, and quadratic forms, Ann. of Math. (2) 171 (2010), 533–544], and Chernousov and Merkurjev [Essential dimension of spinor and Clifford groups, Algebra Number Theory 8 (2014), 457–472] to fields of characteristic different from two. We also complete the determination of generic stabilizers in spin and half-spin groups of low rank.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.
Let $h(d)$ be the class number of indefinite binary quadratic forms of discriminant $d$ and let $\unicode[STIX]{x1D700}_{d}$ be the corresponding fundamental unit. In this paper, we obtain an asymptotic formula for the $k$th moment of $h(d)$ over positive discriminants $d$ with $\unicode[STIX]{x1D700}_{d}\leqslant x$, uniformly for real numbers $k$ in the range $0<k\leqslant (\log x)^{1-o(1)}$. This improves upon the work of Raulf, who obtained such an asymptotic for a fixed positive integer $k$. We also investigate the distribution of large values of $h(d)$ when the discriminants $d$ are ordered according to the size of their fundamental units $\unicode[STIX]{x1D700}_{d}$. In particular, we show that the tail of this distribution has the same shape as that of class numbers of imaginary quadratic fields ordered by the size of their discriminants. As an application of these results, we prove that there are many positive discriminants $d$ with class number $h(d)\geqslant (e^{\unicode[STIX]{x1D6FE}}/3+o(1))\cdot \unicode[STIX]{x1D700}_{d}(\log \log \unicode[STIX]{x1D700}_{d})/\log \,\unicode[STIX]{x1D700}_{d}$, a bound that we believe is best possible. We also obtain an upper bound for $h(d)$ that is twice as large, assuming the generalized Riemann hypothesis.
A lattice walk with all steps having the same length $d$ is called a $d$-walk. Denote by ${\mathcal{T}}_{d}$ the terminal set, that is, the set of all lattice points that can be reached from the origin by means of a $d$-walk. We examine some geometric and algebraic properties of the terminal set. After observing that $({\mathcal{T}}_{d},+)$ is a normal subgroup of the group $(\mathbb{Z}^{N},+)$, we ask questions about the quotient group $\mathbb{Z}^{N}/{\mathcal{T}}_{d}$ and give the number of elements of $\mathbb{Z}^{2}/{\mathcal{T}}_{d}$ in terms of $d$. To establish this result, we use several consequences of Fermat’s theorem about representations of prime numbers of the form $4k+1$ as the sum of two squares. One of the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers in this representation.
For any positive integer $M$ we show that there are infinitely many real quadratic fields that do not admit $M$-ary universal quadratic forms (without any restriction on the parity of their cross coefficients).
Let $C\in \mathbb{Z}[x_{1},\ldots ,x_{n}]$ be a cubic form. Assume that $C$ splits into four forms. Then $C(x_{1},\ldots ,x_{n})=0$ has a non-trivial integer solution provided that $n\geqslant 10$.
Let $Q(x,y,z)$ be an integral quadratic form with determinant coprime to some modulus $q$. We show that $q\,|\,Q$ for some non-zero integer vector $(x,y,z)$ of length $O(q^{5/8+{\it\varepsilon}})$, for any fixed ${\it\varepsilon}>0$. Without the coprimality condition on the determinant one could not necessarily achieve an exponent below $2/3$. The proof uses a bound for short character sums involving binary quadratic forms, which extends a result of Chang.
Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\mathbf{G}(F)$ admits a presentation similar to the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group, and alcove walk bases satisfying Bernstein relations. This was previously known only for a $F$-split group $\mathbf{G}$.
We prove that the group of normalized cohomological invariants of degree $3$ modulo the subgroup of semidecomposable invariants of a semisimple split linear algebraic group $G$ is isomorphic to the torsion part of the Chow group of codimension-$2$ cycles of the respective versal $G$-flag. In particular, if $G$ is simple, we show that this factor group is isomorphic to the group of indecomposable invariants of $G$. As an application, we construct nontrivial cohomological invariants for indecomposable central simple algebras.
Let ${\it\mu}_{1},\ldots ,{\it\mu}_{s}$ be real numbers, with ${\it\mu}_{1}$ irrational. We investigate sums of shifted $k$th powers $\mathfrak{F}(x_{1},\ldots ,x_{s})=(x_{1}-{\it\mu}_{1})^{k}+\cdots +(x_{s}-{\it\mu}_{s})^{k}$. For $k\geqslant 4$, we bound the number of variables needed to ensure that if ${\it\eta}$ is real and ${\it\tau}>0$ is sufficiently large then there exist integers $x_{1}>{\it\mu}_{1},\ldots ,x_{s}>{\it\mu}_{s}$ such that $|\mathfrak{F}(\mathbf{x})-{\it\tau}|<{\it\eta}$. This is a real analogue to Waring’s problem. When $s\geqslant 2k^{2}-2k+3$, we provide an asymptotic formula. We prove similar results for sums of general univariate degree-$k$ polynomials.
This work defines a new algebraic structure, to be called an alternative Clifford algebra associated to a given quadratic form. I explored its representations, particularly concentrating on connections to the well-understood octonion algebras. I finished by suggesting directions for future research.
We provide an introduction to enumerating and constructing invariants of group representations via character methods. The problem is contextualized via two case studies, arising from our recent work: entanglement invariants for characterizing the structure of state spaces for composite quantum systems; and Markov invariants, a robust alternative to parameter-estimation intensive methods of statistical inference in molecular phylogenetics.
The celebrated Smith–Minkowski–Siegel mass formula expresses the mass of a quadratic lattice $(L,Q)$ as a product of local factors, called the local densities of $(L,Q)$. This mass formula is an essential tool for the classification of integral quadratic lattices. In this paper, we will describe the local density formula explicitly by observing the existence of a smooth affine group scheme $\underline{G}$ over $\mathbb{Z}_{2}$ with generic fiber $\text{Aut}_{\mathbb{Q}_{2}}(L,Q)$, which satisfies $\underline{G}(\mathbb{Z}_{2})=\text{Aut}_{\mathbb{Z}_{2}}(L,Q)$. Our method works for any unramified finite extension of $\mathbb{Q}_{2}$. Therefore, we give a long awaited proof for the local density formula of Conway and Sloane and discover its generalization to unramified finite extensions of $\mathbb{Q}_{2}$. As an example, we give the mass formula for the integral quadratic form $Q_{n}(x_{1},\dots ,x_{n})=x_{1}^{2}+\cdots +x_{n}^{2}$ associated to a number field $k$ which is totally real and such that the ideal $(2)$ is unramified over $k$.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.
New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.
As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.
While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms $f_D$ which are naturally defined in terms of binary quadratic forms of discriminant $D$. It was later determined by Kohnen and Zagier that the generating function for the function $f_D$ is a half-integral weight cusp form. A natural preimage of $f_D$ under a differential operator at the heart of the theory of harmonic weak Maass forms was determined by the first two authors and Kohnen. In this paper, we consider the modularity properties of the generating function of these preimages. We prove that although the generating function is not itself modular, it can be naturally completed to obtain a half-integral weight modular object.
We give an enumeration of all positive definite primitive $ \mathbb{Z} $-lattices in dimension $n\geq 3$ whose genus consists of a single isometry class. This is achieved by using bounds obtained from the Smith–Minkowski–Siegel mass formula to computationally construct the square-free determinant lattices with this property, and then repeatedly calculating pre-images under a mapping first introduced by G. L. Watson.
We hereby complete the classification of single-class genera in dimensions 4 and 5 and correct some mistakes in Watson’s classifications in other dimensions. A list of all single-class primitive $ \mathbb{Z} $-lattices has been compiled and incorporated into the Catalogue of Lattices.
Given an intersection of two quadrics $X\subset { \mathbb{P} }^{m- 1} $, with $m\geq 9$, the quantitative arithmetic of the set $X( \mathbb{Q} )$ is investigated under the assumption that the singular locus of $X$ consists of a pair of conjugate singular points defined over $ \mathbb{Q} (i)$.