We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an optimal modular parametrization $J_{0}(n){\twoheadrightarrow}E$ of an elliptic curve $E$ over $\mathbb{Q}$ of conductor $n$, Manin conjectured the agreement of two natural $\mathbb{Z}$-lattices in the $\mathbb{Q}$-vector space $H^{0}(E,\unicode[STIX]{x1D6FA}^{1})$. Multiple authors generalized his conjecture to higher-dimensional newform quotients. We prove the Manin conjecture for semistable $E$, give counterexamples to all the proposed generalizations, and prove several semistable special cases of these generalizations. The proofs establish general relations between the integral $p$-adic étale and de Rham cohomologies of abelian varieties over $p$-adic fields and exhibit a new exactness result for Néron models.
We investigate certain families of meromorphic Siegel modular functions on which Galois groups act in a natural way. By using Shimura's reciprocity law we construct some algebraic numbers in the ray class fields of CM-fields in terms of special values of functions in these Siegel families.
Let F be a number field, let N ≥ 3 be an integer, and let k be a finite field of characteristic ℓ. We show that if ρ:GF → GLN(k) is a continuous representation with image of ρ containing SLN(k) then, under moderate conditions at primes dividing ℓ∞, there is a continuous representation ρ:GF → GLN(W(k)) unramified outside finitely many primes with ρ ~ρ mod ℓ. Stronger results are presented for ρ:Gℚ → GL3(k).
The ‘Borcherds products everywhere’ construction [Gritsenko et al., ‘Borcherds products everywhere’, J. Number Theory148 (2015), 164–195] creates paramodular Borcherds products from certain theta blocks. We prove that the $q$-order of every such Borcherds product lies in a sequence $\{C_{\unicode[STIX]{x1D708}}\}$, depending only on the $q$-order $\unicode[STIX]{x1D708}$ of the theta block. Similarly, the $q$-order of the leading Fourier–Jacobi coefficient of every such Borcherds product lies in a sequence $\{A_{\unicode[STIX]{x1D708}}\}$, and this is the sequence $\{a_{n}\}$ from work of Newman and Shanks in connection with a family of series for $\unicode[STIX]{x1D70B}$. Our proofs use a combinatorial formula giving the Fourier expansion of any theta block in terms of its germ.
The author gives the analytic properties of the Rankin–Selberg convolutions of two half-integral weight Maass forms in the plus space. Applications to the Koecher–Maass series associated with nonholomorphic Siegel–Eisenstein series are given.
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.
For K, an imaginary quadratic field with discriminant −DK, and associated quadratic Galois character χK, Kojima, Gritsenko and Krieg studied a Hermitian Maass lift of elliptic modular cusp forms of level DK and nebentypus χK via Hermitian Jacobi forms to Hermitian modular forms of level one for the unitary group U(2, 2) split over K. We generalize this (under certain conditions on K and p) to the case of p-oldforms of level pDK and character χK. To do this, we define an appropriate Hermitian Maass space for general level and prove that it is isomorphic to the space of special Hermitian Jacobi forms. We then show how to adapt this construction to lift a Hida family of modular forms to a p-adic analytic family of automorphic forms in the Maass space of level p.
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
Let $G$ be a semisimple Lie group with associated symmetric space $D$, and let $\unicode[STIX]{x1D6E4}\subset G$ be a cocompact arithmetic group. Let $\mathscr{L}$ be a lattice inside a $\mathbb{Z}\unicode[STIX]{x1D6E4}$-module arising from a rational finite-dimensional complex representation of $G$. Bergeron and Venkatesh recently gave a precise conjecture about the growth of the order of the torsion subgroup $H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}$ as $\unicode[STIX]{x1D6E4}_{k}$ ranges over a tower of congruence subgroups of $\unicode[STIX]{x1D6E4}$. In particular, they conjectured that the ratio $\log |H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}|/[\unicode[STIX]{x1D6E4}:\unicode[STIX]{x1D6E4}_{k}]$ should tend to a nonzero limit if and only if $i=(\dim (D)-1)/2$ and $G$ is a group of deficiency $1$. Furthermore, they gave a precise expression for the limit. In this paper, we investigate computationally the cohomology of several (non-cocompact) arithmetic groups, including $\operatorname{GL}_{n}(\mathbb{Z})$ for $n=3,4,5$ and $\operatorname{GL}_{2}(\mathscr{O})$ for various rings of integers, and observe its growth as a function of level. In all cases where our dataset is sufficiently large, we observe excellent agreement with the same limit as in the predictions of Bergeron–Venkatesh. Our data also prompts us to make two new conjectures on the growth of torsion not covered by the Bergeron–Venkatesh conjecture.
It is an open question whether the fractional parts of non-linear polynomials at integers have the same fine-scale statistics as a Poisson point process. Most results towards an affirmative answer have so far been restricted to almost sure convergence in the space of polynomials of a given degree. We will here provide explicit Diophantine conditions on the coefficients of polynomials of degree two, under which the convergence of an averaged pair correlation density can be established. The limit is consistent with the Poisson distribution. Since quadratic polynomials at integers represent the energy levels of a class of integrable quantum systems, our findings provide further evidence for the Berry–Tabor conjecture in the theory of quantum chaos.
We construct the $\unicode[STIX]{x1D6EC}$-adic crystalline and Dieudonné analogues of Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology, and employ integral $p$-adic Hodge theory to prove $\unicode[STIX]{x1D6EC}$-adic comparison isomorphisms between these cohomologies and the $\unicode[STIX]{x1D6EC}$-adic de Rham cohomology studied in Cais [The geometry of Hida families I:$\unicode[STIX]{x1D6EC}$-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s $\unicode[STIX]{x1D6EC}$-adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules attached to Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology by Dee [$\unicode[STIX]{x1D6F7}$–$\unicode[STIX]{x1D6E4}$modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable $\unicode[STIX]{x1D6EC}$-adic duality theorems for each of the cohomologies we construct.
We prove an equidistribution theorem for a family of holomorphic Siegel cusp forms for $\mathit{GSp}_{4}/\mathbb{Q}$ in various aspects. A main tool is Arthur’s invariant trace formula. While Shin [Automorphic Plancherel density theorem, Israel J. Math.192(1) (2012), 83–120] and Shin–Templier [Sato–Tate theorem for families and low-lying zeros of automorphic $L$-functions, Invent. Math.203(1) (2016) 1–177] used Euler–Poincaré functions at infinity in the formula, we use a pseudo-coefficient of a holomorphic discrete series to extract holomorphic Siegel cusp forms. Then the non-semisimple contributions arise from the geometric side, and this provides new second main terms $A,B_{1}$ in Theorem 1.1 which have not been studied and a mysterious second term $B_{2}$ also appears in the second main term coming from the semisimple elements. Furthermore our explicit study enables us to treat more general aspects in the weight. We also give several applications including the vertical Sato–Tate theorem, the unboundedness of Hecke fields and low-lying zeros for degree 4 spinor $L$-functions and degree 5 standard $L$-functions of holomorphic Siegel cusp forms.
In this paper we prove a conjecture relating the Whittaker function of a certain generating function with the Whittaker function of the theta representation $\unicode[STIX]{x1D6E9}_{n}^{(n)}$. This enables us to establish that a certain global integral is factorizable and hence deduce the meromorphic continuation of the standard partial $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$. In fact we prove that this partial $L$ function has at most a simple pole at $s=1$. Here, $\unicode[STIX]{x1D70B}^{(n)}$ is a genuine irreducible cuspidal representation of the group $\text{GL}_{r}^{(n)}(\mathbf{A})$.
We study a kernel function of the twisted symmetric square $L$-function of elliptic modular forms. As an application, several exact special values of the $L$-function are computed.
Let $\unicode[STIX]{x1D6E4}\subseteq \operatorname{PSL}(2,\mathbf{R})$ be a finite-volume Fuchsian group. The hyperbolic circle problem is the estimation of the number of elements of the $\unicode[STIX]{x1D6E4}$-orbit of $z$ in a hyperbolic circle around $w$ of radius $R$, where $z$ and $w$ are given points of the upper half plane and $R$ is a large number. An estimate with error term $\text{e}^{(2/3)R}$ is known, and this has not been improved for any group. Recently, Risager and Petridis proved that in the special case $\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$ taking $z=w$ and averaging over $z$ in a certain way the error term can be improved to $\text{e}^{(7/12+\unicode[STIX]{x1D716})R}$. Here we show such an improvement for a general $\unicode[STIX]{x1D6E4}$; our error term is $\text{e}^{(5/8+\unicode[STIX]{x1D716})R}$ (which is better than $\text{e}^{(2/3)R}$ but weaker than the estimate of Risager and Petridis in the case $\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$). Our main tool is our generalization of the Selberg trace formula proved earlier.
We prove an exact formula for the second moment of Rankin–Selberg $L$-functions $L(\frac{1}{2},f\times g)$ twisted by $\unicode[STIX]{x1D706}_{f}(p)$, where $g$ is a fixed holomorphic cusp form and $f$ is summed over automorphic forms of a given level $q$. The formula is a reciprocity relation that exchanges the twist parameter $p$ and the level $q$. The method involves the Bruggeman–Kuznetsov trace formula on both ends; finally the reciprocity relation is established by an identity of sums of Kloosterman sums.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
Modular curves like X0(N) and X1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(ℤ), they allow for a more arithmetic description as a solution to a moduli problem. We wish to give such a moduli description for two other modular curves, denoted here by Xnsp(p) and Xnsp+(p) associated to non-split Cartan subgroups and their normaliser in GL2(𝔽p). These modular curves appear for instance in Serre's problem of classifying all possible Galois structures of p-torsion points on elliptic curves over number fields. We give then a moduli-theoretic interpretation and a new proof of a result of Chen (Proc. London Math. Soc. (3) 77(1) (1998), 1–38; J. Algebra231(1) (2000), 414–448).
For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature $(1,n+1)$, with $n\geqslant 1$, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products. We obtain a precise criterion for local Heegner divisors to be torsion elements in the Picard group, and further, as an application, we show that the obstructions to a local Heegner divisor being a torsion element can be described by certain spaces of vector-valued elliptic cusp forms, transforming under a Weil representation.