We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the variation of $\unicode[STIX]{x1D707}$-invariants in Hida families with residually reducible Galois representations. We prove a lower bound for these invariants which is often expressible in terms of the $p$-adic zeta function. This lower bound forces these $\unicode[STIX]{x1D707}$-invariants to be unbounded along the family, and we conjecture that this lower bound is an equality. When $U_{p}-1$ generates the cuspidal Eisenstein ideal, we establish this conjecture and further prove that the $p$-adic $L$-function is simply a power of $p$ up to a unit (i.e. $\unicode[STIX]{x1D706}=0$). On the algebraic side, we prove analogous statements for the associated Selmer groups which, in particular, establishes the main conjecture for such forms.
We consider families of Siegel eigenforms of genus $2$ and finite slope, defined as local pieces of an eigenvariety and equipped with a suitable integral structure. Under some assumptions on the residual image, we show that the image of the Galois representation associated with a family is big, in the sense that a Lie algebra attached to it contains a congruence subalgebra of non-zero level. We call the Galois level of the family the largest such level. We show that it is trivial when the residual representation has full image. When the residual representation is a symmetric cube, the zero locus defined by the Galois level of the family admits an automorphic description: it is the locus of points that arise from overconvergent eigenforms for $\operatorname{GL}_{2}$, via a $p$-adic Langlands lift attached to the symmetric cube representation. Our proof goes via the comparison of the Galois level with a ‘fortuitous’ congruence ideal. Some of the $p$-adic lifts are interpolated by a morphism of rigid analytic spaces from an eigencurve for $\operatorname{GL}_{2}$ to an eigenvariety for $\operatorname{GSp}_{4}$, while the remainder appear as isolated points on the eigenvariety.
We discuss the generalizations of the concept of Chebyshev’s bias from two perspectives. First, we give a general framework for the study of prime number races and Chebyshev’s bias attached to general L-functions satisfying natural analytic hypotheses. This extends the cases previously considered by several authors and involving, among others, Dirichlet L-functions and Hasse–Weil L-functions of elliptic curves over Q. This also applies to new Chebyshev’s bias phenomena that were beyond the reach of the previously known cases. In addition, we weaken the required hypotheses such as GRH or linear independence properties of zeros of L-functions. In particular, we establish the existence of the logarithmic density of the set $ \{x \ge 2:\sum\nolimits_{p \le x} {\lambda _f}(p) \ge 0\}$ for coefficients (λf(p)) of general L-functions conditionally on a much weaker hypothesis than was previously known.
Motivated by Ramanujan’s continued fraction and the work of Richmond and Szekeres [‘The Taylor coefficients of certain infinite products’, Acta Sci. Math. (Szeged)40(3–4) (1978), 347–369], we investigate vanishing coefficients along arithmetic progressions in four quotients of infinite product expansions and obtain similar results. For example, $a_{1}(5n+4)=0$, where $a_{1}(n)$ is defined by
We study the analogue of the Bombieri–Vinogradov theorem for $\operatorname{SL}_{m}(\mathbb{Z})$ Hecke–Maass form $F(z)$. In particular, for $\operatorname{SL}_{2}(\mathbb{Z})$ holomorphic or Maass Hecke eigenforms, symmetric-square lifts of holomorphic Hecke eigenforms on $\operatorname{SL}_{2}(\mathbb{Z})$, and $\operatorname{SL}_{3}(\mathbb{Z})$ Maass Hecke eigenforms under the Ramanujan conjecture, the levels of distribution are all equal to $1/2,$ which is as strong as the Bombieri–Vinogradov theorem. As an application, we study an automorphic version of Titchmarch’s divisor problem; namely for $a\neq 0,$
where $\unicode[STIX]{x1D70C}(n)$ are Fourier coefficients $\unicode[STIX]{x1D706}_{f}(n)$ of a holomorphic Hecke eigenform $f$ for $\operatorname{SL}_{2}(\mathbb{Z})$ or Fourier coefficients $A_{F}(n,1)$ of its symmetric-square lift $F$. Further, as a consequence, we get an asymptotic formula
where $E_{1}(a)$ is a constant depending on $a$. Moreover, we also consider the asymptotic orthogonality of the Möbius function against the arithmetic function $\unicode[STIX]{x1D70C}(n)d(n-a)$.
J. Bellaïche and M. Dimitrov showed that the $p$-adic eigencurve is smooth but not étale over the weight space at $p$-regular theta series attached to a character of a real quadratic field $F$ in which $p$ splits. In this paper we prove the existence of an isomorphism between the subring fixed by the Atkin–Lehner involution of the completed local ring of the eigencurve at these points and a universal ring representing a pseudo-deformation problem. Additionally, we give a precise criterion for which the ramification index is exactly 2. We finish this paper by proving the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert modular forms over $F$ at the overconvergent cuspidal Eisenstein points, being the base change lift for $\text{GL}(2)_{/F}$ of these theta series. Our approach uses deformations and pseudo-deformations of reducible Galois representations.
We characterize the cuspidal representations of $G_{2}$ whose standard ${\mathcal{L}}$-function admits a pole at $s=2$ as the image of the Rallis–Schiffmann lift for the commuting pair ($\widetilde{\text{SL}}_{2}$, $G_{2}$) in $\widetilde{\text{Sp}}_{14}$. The image consists of non-tempered representations. The main tool is the recent construction, by the second author, of a family of Rankin–Selberg integrals representing the standard ${\mathcal{L}}$-function.
We show that every Fricke-invariant meromorphic modular form for $\unicode[STIX]{x1D6E4}_{0}(N)$ whose divisor on $X_{0}(N)$ is defined over $\mathbb{Q}$ and supported on Heegner divisors and the cusps is a generalized Borcherds product associated to a harmonic Maass form of weight $1/2$. Further, we derive a criterion for the finiteness of the multiplier systems of generalized Borcherds products in terms of the vanishing of the central derivatives of $L$-functions of certain weight $2$ newforms. We also prove similar results for twisted Borcherds products.
Let $L/F$ be a quadratic extension of totally real number fields. For any prime $p$ unramified in $L$, we construct a $p$-adic $L$-function interpolating the central values of the twisted triple product $L$-functions attached to a $p$-nearly ordinary family of unitary cuspidal automorphic representations of $\text{Res}_{L\times F/F}(\text{GL}_{2})$. Furthermore, when $L/\mathbb{Q}$ is a real quadratic number field and $p$ is a split prime, we prove a $p$-adic Gross–Zagier formula relating the values of the $p$-adic $L$-function outside the range of interpolation to the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
We determine the parity of the Langlands parameter of a conjugate self-dual supercuspidal representation of $\text{GL}(n)$ over a non-archimedean local field by means of the local Jacquet–Langlands correspondence. It gives a partial generalization of a previous result on the self-dual case by Prasad and Ramakrishnan.
In a recent study of how the output voltage of a Hall plate is affected by the shape of the plate and the size of its contacts, U. Ausserlechner has come up with a remarkable double integral that can be viewed as a generalisation of the classical elliptic ‘arithmetic–geometric mean (AGM)’ integral. Here we discuss transformation properties of the integral, which were experimentally observed by Ausserlechner, as well as its analytical and arithmetic features including connections with modular forms.
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
We prove an upper bound for the fifth moment of Hecke L-functions associated to holomorphic Hecke cusp forms of full level and weight k in a dyadic interval K ≤ k ≤2K, as K → ∞. The bound is sharp on Selberg’s eigenvalue conjecture.
We construct the $p$-adic standard $L$-functions for ordinary families of Hecke eigensystems of the symplectic group $\operatorname{Sp}(2n)_{/\mathbb{Q}}$ using the doubling method. We explain a clear and simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group $\operatorname{Sp}(4n)_{/\mathbb{Q}}$, which guarantees the nonvanishing of local zeta integrals and allows us to $p$-adically interpolate the restrictions of the Siegel Eisenstein series to $\operatorname{Sp}(2n)_{/\mathbb{Q}}\times \operatorname{Sp}(2n)_{/\mathbb{Q}}$.
We describe poles and the corresponding residual automorphic representations of Eisenstein series attached to maximal parabolic subgroups whose unipotent radicals admit Jordan algebra structure.
A theorem of Gekeler compares the number of non-isomorphic automorphic representations associated with the space of cusp forms of weight $k$ on $\unicode[STIX]{x0393}_{0}(N)$ to a simpler function of $k$ and $N$, showing that the two are equal whenever $N$ is squarefree. We prove the converse of this theorem (with one small exception), thus providing a characterization of squarefree integers. We also establish a similar characterization of prime numbers in terms of the number of Hecke newforms of weight $k$ on $\unicode[STIX]{x0393}_{0}(N)$.
It follows that a hypothetical fast algorithm for computing the number of such automorphic representations for even a single weight $k$ would yield a fast test for whether $N$ is squarefree. We also show how to obtain bounds on the possible square divisors of a number $N$ that has been found not to be squarefree via this test, and we show how to probabilistically obtain the complete factorization of the squarefull part of $N$ from the number of such automorphic representations for two different weights. If in addition we have the number of such Hecke newforms for even a single weight $k$, then we show how to probabilistically factor $N$ entirely. All of these computations could be performed quickly in practice, given the number(s) of automorphic representations and modular forms as input.
We show that if the zeros of an automorphic $L$-function are weighted by the central value of the $L$-function or a quadratic imaginary base change, then for certain families of holomorphic GL(2) newforms, it has the effect of changing the distribution type of low-lying zeros from orthogonal to symplectic, for test functions whose Fourier transforms have sufficiently restricted support. However, if the $L$-value is twisted by a nontrivial quadratic character, the distribution type remains orthogonal. The proofs involve two vertical equidistribution results for Hecke eigenvalues weighted by central twisted $L$-values. One of these is due to Feigon and Whitehouse, and the other is new and involves an asymmetric probability measure that has not appeared in previous equidistribution results for GL(2).
In this article we explore the interplay between two generalizations of the Whittaker model, namely the Klyachko models and the degenerate Whittaker models, and two functorial constructions, namely base change and automorphic induction, for the class of unitarizable and ladder representations of the general linear groups.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.