We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
It has been well established that congruences between automorphic forms have far-reaching applications in arithmetic. In this paper, we construct congruences for Siegel–Hilbert modular forms defined over a totally real field of class number 1. As an application of this general congruence, we produce congruences between paramodular Saito–Kurokawa lifts and non-lifted Siegel modular forms. These congruences are used to produce evidence for the Bloch–Kato conjecture for elliptic newforms of square-free level and odd functional equation.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group
$\mathrm {SL}(d,{\mathbb {R}})$
and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
In this paper, we analyze Fourier coefficients of automorphic forms on a finite cover G of an adelic split simply-laced group. Let
$\pi $
be a minimal or next-to-minimal automorphic representation of G. We prove that any
$\eta \in \pi $
is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on
$\operatorname {GL}_n$
. We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type
$D_5$
and
$E_8$
with a view toward applications to scattering amplitudes in string theory.
In this paper, we decompose
$\overline {D}(a,M)$
into modular and mock modular parts, so that it gives as a straightforward consequencethe celebrated results of Bringmann and Lovejoy on Maass forms. Let
$\overline {p}(n)$
be the number of partitions of n and
$\overline {N}(a,M,n)$
be the number of overpartitions of n with rank congruent to a modulo M. Motivated by Hickerson and Mortenson, we find and prove a general formula for Dyson’s ranks by considering the deviation of the ranks from the average:
Let $n$ be either $2$ or an odd integer greater than $1$, and fix a prime $p>2(n+1)$. Under standard ‘adequate image’ assumptions, we show that the set of components of $n$-dimensional $p$-adic potentially semistable local Galois deformation rings that are seen by potentially automorphic compatible systems of polarizable Galois representations over some CM field is independent of the particular global situation. We also (under the same assumption on $n$) improve on the main potential automorphy result of Barnet-Lamb et al. [Potential automorphy and change of weight, Ann. of Math. (2)179(2) (2014), 501–609], replacing ‘potentially diagonalizable’ by ‘potentially globally realizable’.
We define variants of PEL type of the Shimura varieties that appear in the context of the arithmetic Gan–Gross–Prasad (AGGP) conjecture. We formulate for them a version of the AGGP conjecture. We also construct (global and semi-global) integral models of these Shimura varieties and formulate for them conjectures on arithmetic intersection numbers. We prove some of these conjectures in low dimension.
Suppose that $G$ is a simple reductive group over $\mathbf{Q}$, with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$-valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$, which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$. We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$, which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$.
In an earlier paper of Wee Teck Gan and Gordan Savin, the local Langlands correspondence for metaplectic groups over a nonarchimedean local field of characteristic zero was established. In this paper, we formulate and prove a local intertwining relation for metaplectic groups assuming the local intertwining relation for non-quasi-split odd special orthogonal groups.
Let A be the product of an abelian variety and a torus over a number field K, and let
$$m \ge 2$$
be a square-free integer. If
$\alpha \in A(K)$
is a point of infinite order, we consider the set of primes
$\mathfrak p$
of K such that the reduction
$(\alpha \bmod \mathfrak p)$
is well defined and has order coprime to m. This set admits a natural density, which we are able to express as a finite sum of products of
$\ell$
-adic integrals, where
$\ell$
varies in the set of prime divisors of m. We deduce that the density is a rational number, whose denominator is bounded (up to powers of m) in a very strong sense. This extends the results of the paper Reductions of points on algebraic groups by Davide Lombardo and the second author, where the case m prime is established.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$. By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$, a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$-function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.
Let f and g be two cuspidal modular forms and let
${\mathcal {F}}$
be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space
$\mathcal {W}$
. Using ideas of Pottharst, under certain hypotheses on f and
$g,$
we construct a coherent sheaf over
$V \times \mathcal {W}$
that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function
$L_p$
interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of
$L_p$
.
By making use of the ‘creative microscoping’ method, Guo and Zudilin [‘Dwork-type supercongruences through a creative $q$-microscope’, Preprint, 2020, arXiv:2001.02311] proved several Dwork-type supercongruences, including some conjectures of Swisher. In this paper, we apply the Guo–Zudilin method to prove a new Dwork-type supercongruence, which uniformly generalises several conjectures of Swisher.
We show a Siegel–Weil formula in the setting of exceptional theta correspondence. Using this, together with a new Rankin–Selberg integral for the Spin L-function of $\text{PGSp}_{6}$ discovered by Pollack, we prove that a cuspidal representation of $\text{PGSp}_{6}$ is a (weak) functorial lift from the exceptional group $G_{2}$ if its (partial) Spin L-function has a pole at $s=1$.
We introduce a new family of real-analytic modular forms on the upper-half plane. They are arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in $q,\overline{q}$ and $\log |q|$ involving only rational numbers and single-valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein series.
Under an assumption on the existence of $p$-adic Galois representations, we carry out Taylor–Wiles patching (in the derived category) for the completed homology of the locally symmetric spaces associated with $\operatorname{GL}_{n}$ over a number field. We use our construction, and some new results in non-commutative algebra, to show that standard conjectures on completed homology imply ‘big $R=\text{big}~\mathbb{T}$’ theorems in situations where one cannot hope to appeal to the Zariski density of classical points (in contrast to all previous results of this kind). In the case where $n=2$ and $p$ splits completely in the number field, we relate our construction to the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
We show that the compactly supported cohomology of certain $\text{U}(n,n)$- or $\text{Sp}(2n)$-Shimura varieties with $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$-level vanishes above the middle degree. The only assumption is that we work over a CM field $F$ in which the prime $p$ splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for $\text{GL}_{n}/F$. More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze [On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), 945–1066; MR 3418533] and Newton–Thorne [Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21; MR 3528275].
Waldspurger’s formula gives an identity between the norm of a torus period and an $L$-function of the twist of an automorphic representation on GL(2). For any two Hecke characters of a fixed quadratic extension, one can consider the two torus periods coming from integrating one character against the automorphic induction of the other. Because the corresponding $L$-functions agree, (the norms of) these periods—which occur on different quaternion algebras—are closely related. In this paper, we give a direct proof of an explicit identity between the torus periods themselves.
We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form $x^{4}-y^{4}$, through appeal to Frey curves of various signatures and related techniques.