We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the completed Hecke algebra of $p$-adic modular forms is isomorphic to the completed Hecke algebra of continuous $p$-adic automorphic forms for the units of the quaternion algebra ramified at $p$ and $\infty$. This gives an affirmative answer to a question posed by Serre in a 1987 letter to Tate. The proof is geometric, and lifts a mod $p$ argument due to Serre: we evaluate modular forms by identifying a quaternionic double-coset with a fiber of the Hodge–Tate period map, and extend functions off of the double-coset using fake Hasse invariants. In particular, this gives a new proof, independent of the classical Jacquet–Langlands correspondence, that Galois representations can be attached to classical and $p$-adic quaternionic eigenforms.
Consider three normalized cuspidal eigenforms of weight
$2$
and prime level p. Under the assumption that the global root number of the associated triple product L-function is
$+1$
, we prove that the complex Abel–Jacobi image of the modified diagonal cycle of Gross–Kudla–Schoen on the triple product of the modular curve
$X_0(p)$
is torsion in the corresponding Hecke isotypic component of the Griffiths intermediate Jacobian. The same result holds with the complex Abel–Jacobi map replaced by its étale counterpart. As an application, we deduce torsion properties of Chow–Heegner points associated with modified diagonal cycles on elliptic curves of prime conductor with split multiplicative reduction. The approach also works in the case of composite square-free level.
We explicate the combinatorial/geometric ingredients of Arthur’s proof of the convergence and polynomiality, in a truncation parameter, of his noninvariant trace formula. Starting with a fan in a real, finite dimensional, vector space and a collection of functions, one for each cone in the fan, we introduce a combinatorial truncated function with respect to a polytope normal to the fan and prove the analogues of Arthur’s results on the convergence and polynomiality of the integral of this truncated function over the vector space. The convergence statements clarify the important role of certain combinatorial subsets that appear in Arthur’s work and provide a crucial partition that amounts to a so-called nearest face partition. The polynomiality statements can be thought of as far reaching extensions of the Ehrhart polynomial. Our proof of polynomiality relies on the Lawrence–Varchenko conical decomposition and readily implies an extension of the well-known combinatorial lemma of Langlands. The Khovanskii–Pukhlikov virtual polytopes are an important ingredient here. Finally, we give some geometric interpretations of our combinatorial truncation on toric varieties as a measure and a Lefschetz number.
In this work we generalise the main result of [1] to the family of hyperelliptic curves with potentially good reduction over a p-adic field which have genus
$g=({p-1})/{2}$
and the largest possible image of inertia under the
$\ell$
-adic Galois representation associated to its Jacobian. We will prove that this Galois representation factors as the tensor product of an unramified character and an irreducible representation of a finite group, which can be either equal to the inertia image (in which case the representation is easily determined) or a
$C_2$
-extension of it. In this second case, there are two suitable representations and we will describe the Galois action explicitly in order to determine the correct one.
Let
$N\geq 1$
be squarefree with
$(N,6)=1$
. Let
$c\phi _N(n)$
denote the number of N-colored generalized Frobenius partitions of n introduced by Andrews in 1984, and
$P(n)$
denote the number of partitions of n. We prove
where
$C(z) := (q;q)^N_\infty \sum _{n=1}^{\infty } b(n) q^n$
is a cusp form in
$S_{(N-1)/2} (\Gamma _0(N),\chi _N)$
. This extends and strengthens earlier results of Kolitsch and Chan–Wang–Yan treating the case when N is a prime. As an immediate application, we obtain an asymptotic formula for
$c\phi _N(n)$
in terms of the classical partition function
$P(n)$
.
We develop some asymptotics for a kernel function introduced by Kohnen and use them to estimate the number of normalised Hecke eigenforms in
$S_k(\Gamma _0(1))$
whose L-values are simultaneously nonvanishing at a given pair of points each of which lies inside the critical strip.
For an (irreducible) recurrence equation with coefficients from
$\mathbb Z[n]$
and its two linearly independent rational solutions
$u_n,v_n$
, the limit of
$u_n/v_n$
as
$n\to \infty $
, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
Let
$j_n$
be the modular function obtained by applying the nth Hecke operator on the classical j-invariant. For
$n>m\ge 2$
, we prove that between any two zeros of
$j_m$
on the unit circle of the fundamental domain, there is a zero of
$j_n$
.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
Let
$p_{\{3, 3\}}(n)$
denote the number of
$3$
-regular partitions in three colours. Da Silva and Sellers [‘Arithmetic properties of 3-regular partitions in three colours’, Bull. Aust. Math. Soc.104(3) (2021), 415–423] conjectured four Ramanujan-like congruences modulo
$5$
satisfied by
$p_{\{3, 3\}}(n)$
. We confirm these conjectural congruences using the theory of modular forms.
We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.
We establish the Bernstein-centre type of results for the category of mod p representations of
$\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$
. We treat all the remaining open cases, which occur when p is
$2$
or
$3$
. Our arguments carry over for all primes p. This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of
$\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$
with equal Hodge–Tate weights.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the L-function, our interval is smaller than previous known results. More specifically, for $\left \lvert t_j\right \rvert $ of size T, our interval is of size $T^{1/5}$, whereas the previous best was $T^{1/3}$, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at $s=1/2+it$ provided $\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $ for any fixed $\delta>0$. Since $\lvert t\rvert $ can be taken significantly smaller than $\left \lvert t_j\right \rvert $, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at $s=1/2$.
We study families of metrics on automorphic vector bundles associated with representations of the modular group. These metrics are defined using an Eisenstein series construction. We show that in certain cases, the residue of these Eisenstein metrics at their rightmost pole is a harmonic metric for the underlying representation of the modular group. The last section of the paper considers the case of a family of representations that are indecomposable but not irreducible. The analysis of the corresponding Eisenstein metrics, and the location of their rightmost pole, is an open question whose resolution depends on the asymptotics of matrix-valued Kloosterman sums.
We show that geodesics in
$\mathbf {H}$
attached to a maximal split torus or a real quadratic torus in
$GL_{2, \mathbf {Q}}$
are the only irreducible algebraic curves in
$\mathbf {H}$
whose image in
$\mathbf {R}^2$
via the j-invariant is contained in an algebraic curve.
We explain how to develop the twisted doubling integrals for Brylinski–Deligne extensions of connected classical groups. This gives a family of global integrals which represent Euler products for this class of nonlinear extensions.
We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial
$\Theta $
-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial
$\Theta $
-operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.
Let F be a Siegel cusp form of degree
$2$
, even weight
$k \ge 2$
, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients
$a(F,S)$
of F at fundamental matrices S (i.e., with
$-4\det (S)$
equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with
$\det (S) \asymp X$
, the sequence
$a(F,S)$
has at least
$X^{1-\varepsilon }$
sign changes and takes at least
$X^{1-\varepsilon }$
‘large values’. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan–Gross–Prasad conjecture, we prove the bound
$\lvert a(F,S)\rvert \ll _{F, \varepsilon } \frac {\det (S)^{\frac {k}2 - \frac {1}{2}}}{ \left (\log \lvert \det (S)\rvert \right )^{\frac 18 - \varepsilon }}$
for fundamental matrices S.
We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups
${\textrm {GL}}_{2}$
and
${\textrm {GL}}_{3}$
.
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.