To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider three different families of Vafa–Witten invariants of $K3$ surfaces. In each case, the partition function that encodes the Vafa–Witten invariants is given by combinations of twisted Dedekind η-functions. By utilizing known properties of these η-functions, we obtain exact formulae for each of the invariants and prove that they asymptotically satisfy all higher-order Turán inequalities.
We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for ${\mathrm {GL}}(2)$. We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of ${\mathrm {GL}}(2)$-modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for ${\mathrm {GL}}(2)$, and demonstrate its basic properties.
In a series of three earlier papers, we considered a family of restriction problems for classical groups (over local and global fields) and proposed precise answers to these problems using the local and global Langlands correspondence. These restriction problems were formulated in terms of a pair $W \subset V$ of orthogonal, Hermitian, symplectic, or skew-Hermitian spaces. In this paper, we consider a twisted variant of these conjectures in one particular case: that of a pair of skew-Hermitian spaces $W = V$.
In this article, we obtain transformation formulas analogous to the identity of Ramanujan, Hardy and Littlewood in the setting of primitive Maass cusp form over the congruence subgroup $\Gamma _0(N)$ and also provide an equivalent criterion of the grand Riemann hypothesis for the $L$-function associated with the primitive Maass cusp form over $\Gamma _0(N)$.
Let $G$ be a split reductive group over the ring of integers in a $p$-adic field with residue field $\mathbf {F}$. Fix a representation $\overline {\rho }$ of the absolute Galois group of an unramified extension of $\mathbf {Q}_p$, valued in $G(\mathbf {F})$. We study the crystalline deformation ring for $\overline {\rho }$ with a fixed $p$-adic Hodge type that satisfies an analog of the Fontaine–Laffaille condition for $G$-valued representations. In particular, we give a root theoretic condition on the $p$-adic Hodge type which ensures that the crystalline deformation ring is formally smooth. Our result improves on all known results for classical groups not of type A and provides the first such results for exceptional groups.
We investigate the maximal finite length submodule of the Breuil–Kisin prismatic cohomology of a smooth proper formal scheme over a $p$-adic ring of integers. This submodule governs pathology phenomena in integral $p$-adic cohomology theories. Geometric applications include a control, in low degrees and mild ramifications, of (1) the discrepancy between two naturally associated Albanese varieties in characteristic $p$, and (2) the kernel of the specialization map in $p$-adic étale cohomology. As an arithmetic application, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine and Messing, and Kato. Also included is an interesting example, generalized from a construction in Bhatt, Morrow and Scholze's work, which illustrates some of our theoretical results being sharp, and negates a question of Breuil.
Sarnak’s density conjecture is an explicit bound on the multiplicities of nontempered representations in a sequence of cocompact congruence arithmetic lattices in a semisimple Lie group, which is motivated by the work of Sarnak and Xue ([58]). The goal of this work is to discuss similar hypotheses, their interrelation and their applications. We mainly focus on two properties – the spectral spherical density hypothesis and the geometric Weak injective radius property. Our results are strongest in the p-adic case, where we show that the two properties are equivalent, and both imply Sarnak’s general density hypothesis. One possible application is that either the spherical density hypothesis or the Weak injective radius property imply Sarnak’s optimal lifting property ([57]). Conjecturally, all those properties should hold in great generality. We hope that this work will motivate their proofs in new cases.
We construct an anticyclotomic Euler system for the Rankin–Selberg convolutions of two modular forms, using p-adic families of generalised Gross–Kudla–Schoen diagonal cycles. As applications of this construction, we prove new results on the Bloch–Kato conjecture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
We present some results related to Zilber’s Exponential-Algebraic Closedness Conjecture, showing that various systems of equations involving algebraic operations and certain analytic functions admit solutions in the complex numbers. These results are inspired by Zilber’s theorems on raising to powers.
We show that algebraic varieties which split as a product of a linear subspace of an additive group and an algebraic subvariety of a multiplicative group intersect the graph of the exponential function, provided that they satisfy Zilber’s freeness and rotundity conditions, using techniques from tropical geometry.
We then move on to prove a similar theorem, establishing that varieties which split as a product of a linear subspace and a subvariety of an abelian variety A intersect the graph of the exponential map of A (again under the analogues of the freeness and rotundity conditions). The proof uses homology and cohomology of manifolds.
Finally, we show that the graph of the modular j-function intersects varieties which satisfy freeness and broadness and split as a product of a Möbius subvariety of a power of the upper-half plane and a complex algebraic variety, using Ratner’s orbit closure theorem to study the images under j of Möbius varieties.
For a finite extension F of ${\mathbf Q}_p$, Drinfeld defined a tower of coverings of (the Drinfeld half-plane). For $F = {\mathbf Q}_p$, we describe a decomposition of the p-adic geometric étale cohomology of this tower analogous to Emerton’s decomposition of completed cohomology of the tower of modular curves. A crucial ingredient is a finiteness theorem for the arithmetic étale cohomology modulo p whose proof uses Scholze’s functor, global ingredients, and a computation of nearby cycles which makes it possible to prove that this cohomology has finite presentation. This last result holds for all F; for $F\neq {\mathbf Q}_p$, it implies that the representations of $\mathrm{GL}_2(F)$ obtained from the cohomology of the Drinfeld tower are not admissible contrary to the case $F = {\mathbf Q}_p$.
Let f be a non-CM Hecke eigencusp form of level 1 and fixed weight, and let $\{\lambda_f(n)\}_n$ be its sequence of normalised Fourier coefficients. We show that if $K/ \mathbb{Q}$ is any number field, and $\mathcal{N}_K$ denotes the collection of integers representable as norms of integral ideals of K, then a positive proportion of the positive integers $n \in \mathcal{N}_K$ yield a sign change for the sequence $\{\lambda_f(n)\}_{n \in \mathcal{N}_K}$. More precisely, for a positive proportion of $n \in \mathcal{N}_K \cap [1,X]$ we have $\lambda_f(n)\lambda_f(n') < 0$, where n′ is the first element of $\mathcal{N}_K$ greater than n for which $\lambda_f(n') \neq 0$.
For example, for $K = \mathbb{Q}(i)$ and $\mathcal{N}_K = \{m^2+n^2 \;:\; m,n \in \mathbb{Z}\}$ the set of sums of two squares, we obtain $\gg_f X/\sqrt{\log X}$ such sign changes, which is best possible (up to the implicit constant) and improves upon work of Banerjee and Pandey. Our proof relies on recent work of Matomäki and Radziwiłł on sparsely-supported multiplicative functions, together with some technical refinements of their results due to the author.
In a related vein, we also consider the question of sign changes along shifted sums of two squares, for which multiplicative techniques do not directly apply. Using estimates for shifted convolution sums among other techniques, we establish that for any fixed $a \neq 0$ there are $\gg_{f,\varepsilon} X^{1/2-\varepsilon}$ sign changes for $\lambda_f$ along the sequence of integers of the form $a + m^2 + n^2 \leq X$.
It was proven by Bullet and Lomonaco [Mating quadratic maps with the modular group II. Invent. Math.220(1) (2020), 185–210] that $\mathcal {F}_a$ is a mating between the modular group $\operatorname {PSL}_2(\mathbb {Z})$ and a quadratic rational map. We show for every $a\in \mathcal {K}$, the iterated images and preimages under $\mathcal {F}_a$ of non-exceptional points equidistribute, in spite of the fact that $\mathcal {F}_a$ is weakly modular in the sense of Dinh, Kaufmann, and Wu [Dynamics of holomorphic correspondences on Riemann surfaces. Int. J. Math.31(05) (2020), 2050036], but it is not modular. Furthermore, we prove that periodic points equidistribute as well.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
Romyar Sharifi has constructed a map $\varpi _M$ from the first homology of the modular curve $X_1(M)$ to the K-group $K_2(\operatorname {\mathrm {\mathbf {Z}}}[\zeta _M+\zeta _M^{-1}, \frac {1}{M}]) \otimes \operatorname {\mathrm {\mathbf {Z}}}[1/2]$, where $\zeta _M$ is a primitive Mth root of unity. Sharifi conjectured that $\varpi _M$ is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved this conjecture after tensoring with $\operatorname {\mathrm {\mathbf {Z}}}_p$ for a prime $p\geq 5$ dividing M. More recently, Sharifi and Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two main results. First, we give a relation between $\varpi _M$ and $\varpi _{M'}$ when $M' \mid M$. Our method relies on the techniques developed by Sharifi and Venkatesh. We then use this result in combination with results of Fukaya and Kato in order to get the Eisenstein property of $\varpi _M$ for Hecke operators of index dividing M.
In [20], Rohrlich proved a modular analog of Jensen’s formula. Under certain conditions, the Rohrlich–Jensen formula expresses an integral of the log-norm $\log \Vert f \Vert $ of a ${\mathrm {PSL}}(2,{\mathbb {Z}})$ modular form f in terms of the Dedekind Delta function evaluated at the divisor of f. In [2], the authors re-interpreted the Rohrlich–Jensen formula as evaluating a regularized inner product of $\log \Vert f \Vert $ and extended the result to compute a regularized inner product of $\log \Vert f \Vert $ with what amounts to powers of the Hauptmodul of $\mathrm {PSL}(2,{\mathbb {Z}})$. In the present article, we revisit the Rohrlich–Jensen formula and prove that in the case of any Fuchsian group of the first kind with one cusp it can be viewed as a regularized inner product of special values of two Poincaré series, one of which is the Niebur–Poincaré series and the other is the resolvent kernel of the Laplacian. The regularized inner product can be seen as a type of Maass–Selberg relation. In this form, we develop a Rohrlich–Jensen formula associated with any Fuchsian group $\Gamma $ of the first kind with one cusp by employing a type of Kronecker limit formula associated with the resolvent kernel. We present two examples of our main result: First, when $\Gamma $ is the full modular group ${\mathrm {PSL}}(2,{\mathbb {Z}})$, thus reproving the theorems from [2]; and second when $\Gamma $ is an Atkin–Lehner group $\Gamma _{0}(N)^+$, where explicit computations of inner products are given for certain levels N when the quotient space $\overline {\Gamma _{0}(N)^+}\backslash \mathbb {H}$ has genus zero, one, and two.
We study the discriminants of the minimal polynomials $\mathcal {P}_n$ of the Ramanujan $t_n$ class invariants, which are defined for positive $n\equiv 11\pmod {24}$. We show that $\Delta (\mathcal {P}_n)$ divides $\Delta (H_n)$, where $H_n$ is the ring class polynomial, with quotient a perfect square and determine the sign of $\Delta (\mathcal {P}_n)$ based on the ideal class group structure of the order of discriminant $-n$. We also show that the discriminant of the number field generated by $j({(-1+\sqrt {-n})}/{2})$, where j is the j-invariant, divides $\Delta (\mathcal {P}_n)$. Moreover, using Ye’s computation of $\log|\Delta(H_n)|$ [‘Revisiting the Gross–Zagier discriminant formula’, Math. Nachr. 293 (2020), 1801–1826], we show that 3 never divides $\Delta(H_n)$, and thus $\Delta(\mathcal{P}_n)$, for all squarefree $n\equiv11\pmod{24}$.
Let p and $\ell $ be primes such that $p> 3$ and $p \mid \ell -1$ and k be an even integer. We use deformation theory of pseudo-representations to study the completion of the Hecke algebra acting on the space of cuspidal modular forms of weight k and level $\Gamma _0(\ell )$ at the maximal Eisenstein ideal containing p. We give a necessary and sufficient condition for the $\mathbb {Z}_p$-rank of this Hecke algebra to be greater than $1$ in terms of vanishing of the cup products of certain global Galois cohomology classes. We also recover some of the results proven by Wake and Wang-Erickson for $k=2$ using our methods. In addition, we prove some $R=\mathbb {T}$ theorems under certain hypotheses.
In this paper, we prove the algebraicity of some L-values attached to quaternionic modular forms. We follow the rather well-established path of the doubling method. Our main contribution is that we include the case where the corresponding symmetric space is of non-tube type. We make various aspects very explicit, such as the doubling embedding, coset decomposition, and the definition of algebraicity of modular forms via CM-points.
Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible p-adic Galois representations over F by relaxing the big image assumption on the residual representation.
An explicit formula forthe mean value of $\vert L(1,\chi )\vert ^2$ is known, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Lately, the authors obtained that the mean value of $\vert L(1,\chi )\vert ^2$ is asymptotic to $\pi ^2/6$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors $p\equiv 1\ \ \pmod {2d}$ which are trivial on a subgroup H of odd order d of the multiplicative group $({\mathbb Z}/p{\mathbb Z})^*$, provided that $d\ll \frac {\log p}{\log \log p}$. Bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Here, for a given integer $d_0>1$, we consider the same questions for the nonprimitive odd Dirichlet characters $\chi '$ modulo $d_0p$ induced by the odd primitive characters $\chi $ modulo p. We obtain new estimates for Dedekind sums and deduce that the mean value of $\vert L(1,\chi ')\vert ^2$ is asymptotic to $\frac {\pi ^2}{6}\prod _{q\mid d_0}\left (1-\frac {1}{q^2}\right )$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p which are trivial on a subgroup H of odd order $d\ll \frac {\log p}{\log \log p}$. As a consequence, we improve the previous bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$. Moreover, we give a method to obtain explicit formulas and use Mersenne primes to show that our restriction on d is essentially sharp.