To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For N integer $\ge 1$, K. Murty and D. Ramakrishnan defined the Nth Heisenberg curve, as the compactified quotient $X^{\prime }_N$ of the upper half-plane by a certain non-congruence subgroup of the modular group. They ask whether the Manin–Drinfeld principle holds, namely, if the divisors supported on the cusps of those curves are torsion in the Jacobian. We give a model over $\mathbf {Z}[\mu _N,1/N]$ of the Nth Heisenberg curve as covering of the Nth Fermat curve. We show that the Manin–Drinfeld principle holds for $N=3$, but not for $N=5$. We show that the description by generator and relations due to Rohrlich of the cuspidal subgroup of the Fermat curve is explained by the Heisenberg covering, together with a higher covering of a similar nature. The curves $X_N$ and the classical modular curves $X(n)$, for n even integer, both dominate $X(2)$, which produces a morphism between Jacobians $J_N\rightarrow J(n)$. We prove that the latter has image $0$ or an elliptic curve of j-invariant $0$. In passing, we give a description of the homology of $X^{\prime }_{N}$.
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform $f \in S_2(\Gamma _0(N))$ (and closely linked to deformations of the Galois representation $\rho _f$ associated to f), whilst the other measure is related to the congruence module associated to f (and is closely linked to Hecke rings and congruences between f and other newforms in $S_2(\Gamma _0(N))$). The equality of these two measures led to isomorphisms $R={\mathbf T}$ between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections.
We continue our study begun in [BKM21] of the Wiles defect of deformation rings and Hecke rings (at a newform f) acting on the cohomology of Shimura curves over ${\mathbf Q}$: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation $\lambda _f:{\mathbf T} \to {\mathcal O}$. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism $ R={\mathbf T}$ without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at $\lambda _f: R={\mathbf T} \to {\mathcal O}$, and explain in an a priori manner why the answer in [BKM21] is a sum of local defects. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over ${\mathbf Q}$ by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.
We introduce the notion of completed $F$-crystals on the absolute prismatic site of a smooth $p$-adic formal scheme. We define a functor from the category of completed prismatic $F$-crystals to that of crystalline étale $\mathbf {Z}_p$-local systems on the generic fiber of the formal scheme and show that it gives an equivalence of categories. This generalizes the work of Bhatt and Scholze, which treats the case of a mixed characteristic complete discrete valuation ring with perfect residue field.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
In this paper, we investigate the asymptotic distribution of a class of multiplicative functions over arithmetic progressions without the Ramanujan conjecture. We also apply these results to some interesting arithmetic functions in automorphic context, such as coefficients of automorphic L-functions, coefficients of their Rankin–Selberg.
Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.
Let $\Omega $ be a complex lattice which does not have complex multiplication and $\wp =\wp _\Omega $ the Weierstrass $\wp $-function associated with it. Let $D\subseteq \mathbb {C}$ be a disc and $I\subseteq \mathbb {R}$ be a bounded closed interval such that $I\cap \Omega =\varnothing $. Let $f:D\rightarrow \mathbb {C}$ be a function definable in $(\overline {\mathbb {R}},\wp |_I)$. We show that if f is holomorphic on D then f is definable in $\overline {\mathbb {R}}$. The proof of this result is an adaptation of the proof of Bianconi for the $\mathbb {R}_{\exp }$ case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular j-function using similar methods.
The aim of the present paper is to derive effective discrepancy estimates for the distribution of rational points on general semisimple algebraic group varieties, in general families of subsets and at arbitrarily small scales. We establish mean-square, almost sure and uniform estimates for the discrepancy with explicit error bounds. We also prove an analogue of W. Schmidt's theorem, which establishes effective almost sure asymptotic counting of rational solutions to Diophantine inequalities in the Euclidean space. We formulate and prove a version of it for rational points on the group variety, with an effective bound which in some instances can be expected to be the best possible.
In this paper we take up the classical sup-norm problem for automorphic forms and view it from a new angle. Given a twist minimal automorphic representation $\pi$ we consider a special small $\mathrm{GL}_2(\mathbb{Z}_p)$-type V in $\pi$ and prove global sup-norm bounds for an average over an orthonormal basis of V. We achieve a non-trivial saving when the dimension of V grows.
In the article [CEGS20b], we introduced various moduli stacks of two-dimensional tamely potentially Barsotti–Tate representations of the absolute Galois group of a p-adic local field, as well as related moduli stacks of Breuil–Kisin modules with descent data. We study the irreducible components of these stacks, establishing, in particular, that the components of the former are naturally indexed by certain Serre weights.
We show that for every finite set of prime numbers $S$, there are at most finitely many singular moduli that are $S$-units. The key new ingredient is that for every prime number $p$, singular moduli are $p$-adically disperse. We prove analogous results for the Weber modular functions, the $\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
We study some analytic properties of the Asai lifts associated with cuspidal Hilbert modular forms, and prove sharp bounds for the second moment of their central L-values.
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke–Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.
We prove the compatibility of local and global Langlands correspondences for $\operatorname {GL}_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let $r_p(\pi )$ denote an n-dimensional p-adic representation of the Galois group of a CM field F attached to a regular algebraic cuspidal automorphic representation $\pi $ of $\operatorname {GL}_n(\mathbb {A}_F)$. We show that the restriction of $r_p(\pi )$ to the decomposition group of a place $v\nmid p$ of F corresponds up to semisimplification to $\operatorname {rec}(\pi _v)$, the image of $\pi _v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left .r_p(\pi )\right |{}_{\operatorname {Gal}_{F_v}}$ is ‘more nilpotent’ than the monodromy of $\operatorname {rec}(\pi _v)$.
Irregular cusps of an orthogonal modular variety are cusps where the lattice for Fourier expansion is strictly smaller than the lattice of translation. The presence of such a cusp affects the study of pluricanonical forms on the modular variety using modular forms. We study toroidal compactification over an irregular cusp, and clarify there the cusp form criterion for the calculation of Kodaira dimension. At the same time, we show that irregular cusps do not arise frequently: besides the cases when the group is neat or contains $-1$, we prove that the stable orthogonal groups of most (but not all) even lattices have no irregular cusp.
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.
The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
We use the theory of trianguline $(\varphi ,\Gamma )$-modules over pseudorigid spaces to prove a modularity lifting theorem for certain Galois representations which are trianguline at p, including those with characteristic p coefficients. The use of pseudorigid spaces lets us construct integral models of the trianguline varieties of [BHS17], [Che13] after bounding the slope, and we carry out a Taylor–Wiles patching argument for families of overconvergent modular forms. This permits us to construct a patched quaternionic eigenvariety and deduce our modularity results.
Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $\mathrm {GL}_2$. Here, we use ‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary group. Then we specialize this general formula to study quaternionic automorphic representations on the exceptional group $G_2$, eventually getting an analog of the Eichler–Selberg trace formula for classical modular forms. We finally use this together with some techniques of Chenevier, Renard and Taïbi to compute dimensions of spaces of level-$1$ quaternionic representations. On the way, we prove a Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic representations on the compact-at-infinity form $G_2^c$.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation theory argument shows that regularity miraculously does not matter for specifically the case of quaternionic discrete series.
We hope that the techniques and shortcuts highlighted in this project are of interest in other computations about discrete-at-infinity automorphic representations on arbitrary reductive groups instead of just classical ones.