$\tau $-component in the Iwasawa main conjecture
$\mathrm {GL}_N$ and the special values of Rankin–Selberg L-functions over a totally imaginary number field
$ \epsilon $-ISOMORPHISMS FOR RANK ONE
$( \varphi , \Gamma )$-MODULES OVER LUBIN-TATE ROBBA RINGS
$\mathrm {O}_{2n}$ and
$\mathrm {SO}_{2n}$
$\operatorname {GL}(r)$ OVER A NON-ARCHIMEDEAN LOCAL FIELD
$(\varphi,\Gamma)$-modules in families
$\mu$-invariant of two-variable
$2$-adic
$\boldsymbol{L}$-functions
${\ell }$-modular representations of
$\operatorname {GL}_n({ F})$ distinguished by a Galois involution