We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G\subseteq \widetilde{G}$ be two quasisplit connected reductive groups over a local field of characteristic zero and having the same derived group. Although the existence of L-packets is still conjectural in general, it is believed that the L-packets of $G$ should be the restriction of those of $\widetilde{G}$. Motivated by this, we hope to construct the L-packets of $\widetilde{G}$ from those of $G$. The primary example in our mind is when $G=\text{Sp}(2n)$, whose L-packets have been determined by Arthur [The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publications, vol. 61 (American Mathematical Society, Providence, RI, 2013)], and $\widetilde{G}=\text{GSp}(2n)$. As a first step, we need to consider some well-known conjectural properties of L-packets. In this paper, we show how they can be deduced from the conjectural endoscopy theory. As an application, we obtain some structural information about L-packets of $\widetilde{G}$ from those of $G$.
Given a commutative complete local noetherian ring $A$ with finite residue field $\boldsymbol{k}$, we show that there is a topologically finitely generated profinite group $\unicode[STIX]{x1D6E4}$ and an absolutely irreducible continuous representation $\overline{\unicode[STIX]{x1D70C}}:\unicode[STIX]{x1D6E4}\rightarrow \text{GL}_{n}(\boldsymbol{k})$ such that $A$ is a universal deformation ring for $\unicode[STIX]{x1D6E4},\overline{\unicode[STIX]{x1D70C}}$.
Given $k\geqslant 2$, we show that there are at most finitely many rational numbers $x$ and $y\neq 0$ and integers $\ell \geqslant 2$ (with $(k,\ell )\neq (2,2)$) for which
We present a ready to compute trace formula for Hecke operators on vector-valued
modular forms of integral weight for SL2(ℤ) transforming under the Weil representation. As a corollary, we obtain a ready to compute dimension formula for the corresponding space of vector-valued cusp forms, which is more general than the dimension formulae previously published in the vector-valued setting.
We prove a general result on Bailey pairs and show that two Bailey pairs of Bringmann and Kane are special cases. We also show how to use a change of base formula to pass from the pairs of Bringmann and Kane to pairs used by Andrews in his study of Ramanujan's seventh order mock theta functions. We derive several more Bailey pairs of a similar type and use these to construct a number of new q-hypergeometric double sums which are mock theta functions. Finally, we prove identities between some of these mock theta double sums and classical mock theta functions.
We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$-modules, where $F$ is a $p$-adic field and $k$ is an algebraically closed field of characteristic $\ell$ different from $p$. We describe a factorization of this category into blocks, and show that the center of each such block is a reduced, $\ell$-torsion free, finite type $W(k)$-algebra. Moreover, the $k$-points of the center of a such a block are in bijection with the possible ‘supercuspidal supports’ of the smooth $k[\text{GL}_{n}(F)]$-modules that lie in the block. Finally, we describe a large explicit subalgebra of the center of each block and give a description of the action of this algebra on the simple objects of the block, in terms of the description of the classical ‘characteristic zero’ Bernstein center of Bernstein and Deligne [Le ‘centre’ de Bernstein, in Representations des groups redutifs sur un corps local, Traveaux en cours (ed. P. Deligne) (Hermann, Paris), 1–32].
The aim of this paper is to carry out an explicit construction of CAP representations of $\text{GL}(2)$ over a division quaternion algebra with discriminant two. We first construct cusp forms on such a group explicitly by lifting from Maass cusp forms for the congruence subgroup ${\rm\Gamma}_{0}(2)$. We show that this lifting is nonzero and Hecke-equivariant. This allows us to determine each local component of a cuspidal representation generated by such a lifting. We then show that our cuspidal representations provide examples of CAP (cuspidal representation associated to a parabolic subgroup) representations, and, in fact, counterexamples to the Ramanujan conjecture.
We prove a level raising mod $\ell =2$ theorem for elliptic curves over $\mathbb{Q}$. It generalizes theorems of Ribet and Diamond–Taylor and also explains different sign phenomena compared to odd $\ell$. We use it to study the 2-Selmer groups of modular abelian varieties with common mod 2 Galois representation. As an application, we show that the 2-Selmer rank can be arbitrary in level raising families.
We compute the image of any choice of complex conjugation on the Galois representations associated to regular algebraic cuspidal automorphic representations and to torsion classes in the cohomology of locally symmetric spaces for $\text{GL}_{n}$ over a totally real field $F$.
Let $K$ be a finite extension of $\mathbb{Q}_{p}$ and let $\bar{\unicode[STIX]{x1D70C}}$ be a continuous, absolutely irreducible representation of its absolute Galois group with values in a finite field of characteristic $p$. We prove that the Galois representations that become crystalline of a fixed regular weight after an abelian extension are Zariski-dense in the generic fiber of the universal deformation ring of $\bar{\unicode[STIX]{x1D70C}}$. In fact we deduce this from a similar density result for the space of trianguline representations. This uses an embedding of eigenvarieties for unitary groups into the spaces of trianguline representations as well as the corresponding density claim for eigenvarieties as a global input.
We investigate two kinds of Fricke families, those consisting of Fricke functions and those consisting of Siegel functions. In terms of their special values we then generate ray class fields of imaginary quadratic fields over the Hilbert class fields, which are related to the Lang–Schertz conjecture.
In this paper we perform an extensive study of the spaces of automorphic forms for $\text{GL}_{2}$ of weight $2$ and level $\mathfrak{n}$, for $\mathfrak{n}$ an ideal in the ring of integers of the quartic CM field $\mathbb{Q}({\it\zeta}_{12})$ of twelfth roots of unity. This study is conducted through the computation of the Hecke module $H^{\ast }({\rm\Gamma}_{0}(\mathfrak{n}),\mathbb{C})$, and the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for proving equivalence of Galois representations, we are able to provide the first known examples of modular elliptic curves over this field.
We show that every modular form on Γ0(2n) (n ⩾ 2) can be expressed as a sum of eta-quotients, which is a partial answer to Ono's problem. Furthermore, we construct a primitive generator of the ring class field of the order of conductor 4N (N ⩾ 1) in an imaginary quadratic field in terms of the special value of a certain eta-quotient.
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$, and let $G_{E}(\ell )$ be the image of the Galois representation induced by the action of the absolute Galois group of $K$ on the $\ell$-torsion subgroup of $E$. We present two probabilistic algorithms to simultaneously determine $G_{E}(\ell )$ up to local conjugacy for all primes $\ell$ by sampling images of Frobenius elements; one is of Las Vegas type and the other is a Monte Carlo algorithm. They determine $G_{E}(\ell )$ up to one of at most two isomorphic conjugacy classes of subgroups of $\mathbf{GL}_{2}(\mathbf{Z}/\ell \mathbf{Z})$ that have the same semisimplification, each of which occurs for an elliptic curve isogenous to $E$. Under the GRH, their running times are polynomial in the bit-size $n$ of an integral Weierstrass equation for $E$, and for our Monte Carlo algorithm, quasilinear in $n$. We have applied our algorithms to the non-CM elliptic curves in Cremona’s tables and the Stein–Watkins database, some 140 million curves of conductor up to $10^{10}$, thereby obtaining a conjecturally complete list of 63 exceptional Galois images $G_{E}(\ell )$ that arise for $E/\mathbf{Q}$ without CM. Under this conjecture, we determine a complete list of 160 exceptional Galois images $G_{E}(\ell )$ that arise for non-CM elliptic curves over quadratic fields with rational $j$-invariants. We also give examples of exceptional Galois images that arise for non-CM elliptic curves over quadratic fields only when the $j$-invariant is irrational.
In this paper, we study real-dihedral harmonic Maass forms and their Fourier coefficients. The main result expresses the values of Hilbert modular forms at twisted CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229–288] and provides evidence that the individual Fourier coefficients are logarithms of algebraic numbers in the appropriate real-quadratic field. From this result and numerical calculations, we formulate an algebraicity conjecture, which is an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we give a conjectural description of the primes appearing in CM-values of Hilbert modular functions.
For a half-integral weight modular form $f=\sum _{n=1}^{\infty }a_{f}(n)n^{(k-1)/2}q^{n}$ of weight $k=\ell +1/2$ on $\unicode[STIX]{x1D6E4}_{0}(4)$ such that $a_{f}(n)$ ($n\in \mathbb{N}$) are real, we prove for a fixed suitable natural number $r$ that $a_{f}(n)$ changes sign infinitely often as $n$ varies over numbers having at most $r$ prime factors, assuming the analog of the Ramanujan conjecture for Fourier coefficients of half-integral weight forms.
for $m,n$ positive integers, to all $s\in \mathbb{C}$. There are poles of the function corresponding to zeros of the Riemann zeta function and the spectral parameters of Maass forms. The analytic properties of this function are rather delicate. It turns out that the spectral expansion of the zeta function converges only in a left half-plane, disjoint from the region of absolute convergence of the Dirichlet series, even though they both are analytic expressions of the same meromorphic function on the entire complex plane.
We consider the classical theta operator ${\it\theta}$ on modular forms modulo $p^{m}$ and level $N$ prime to $p$, where $p$ is a prime greater than three. Our main result is that ${\it\theta}$ mod $p^{m}$ will map forms of weight $k$ to forms of weight $k+2+2p^{m-1}(p-1)$ and that this weight is optimal in certain cases when $m$ is at least two. Thus, the natural expectation that ${\it\theta}$ mod $p^{m}$ should map to weight $k+2+p^{m-1}(p-1)$ is shown to be false. The primary motivation for this study is that application of the ${\it\theta}$ operator on eigenforms mod $p^{m}$ corresponds to twisting the attached Galois representations with the cyclotomic character. Our construction of the ${\it\theta}$-operator mod $p^{m}$ gives an explicit weight bound on the twist of a modular mod $p^{m}$ Galois representation by the cyclotomic character.