To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Conditionally on the generalized Lindelöf hypothesis, we obtain an asymptotic for the fourth moment of Hecke–Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the random wave conjecture.
For the group $G=\operatorname{PGL}_{2}$ we perform a comparison between two relative trace formulas: on the one hand, the relative trace formula of Jacquet for the quotient $T\backslash G/T$, where $T$ is a nontrivial torus, and on the other the Kuznetsov trace formula (involving Whittaker periods), applied to nonstandard test functions. This gives a new proof of the celebrated result of Waldspurger on toric periods, and suggests a new way of comparing trace formulas, with some analogies to Langlands’ ‘Beyond Endoscopy’ program.
(Torsion in the cohomology of Kottwitz–Harris–Taylor Shimura varieties) When the level at $l$ of a Shimura variety of Kottwitz–Harris–Taylor is not maximal, its cohomology with coefficients in a $\overline{\mathbb{Z}}_{l}$-local system isn’t in general torsion free. In order to prove torsion freeness results of the cohomology, we localize at a maximal ideal $\mathfrak{m}$ of the Hecke algebra. We then prove a result of torsion freeness resting either on $\mathfrak{m}$ itself or on the Galois representation $\overline{\unicode[STIX]{x1D70C}}_{\mathfrak{m}}$ associated to it. Concerning the torsion, in a rather restricted case than Caraiani and Scholze (« On the generic part of the cohomology of compact unitary Shimura varieties », Preprint, 2015), we prove that the torsion doesn’t give new Satake parameters systems by showing that each torsion cohomology class can be raised in the free part of the cohomology of a Igusa variety.
We establish a connection between motivic cohomology classes over the Siegel threefold and non-critical special values of the degree-four $L$-function of some cuspidal automorphic representations of $\text{GSp}(4)$. Our computation relies on our previous work [On higher regulators of Siegel threefolds I: the vanishing on the boundary, Asian J. Math. 19 (2015), 83–120] and on an integral representation of the $L$-function due to Piatetski-Shapiro.
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
There are a number of fundamental results in the study of holomorphic function theory associated to the discrete group $\operatorname{PSL}(2,\mathbb{Z})$, including the following statements: the ring of holomorphic modular forms is generated by the holomorphic Eisenstein series of weights four and six, denoted by $E_{4}$ and $E_{6}$; the smallest-weight cusp form $\unicode[STIX]{x1D6E5}$ has weight twelve and can be written as a polynomial in $E_{4}$ and $E_{6}$; and the Hauptmodul $j$ can be written as a multiple of $E_{4}^{3}$ divided by $\unicode[STIX]{x1D6E5}$. The goal of the present article is to seek generalizations of these results to some other genus-zero arithmetic groups $\unicode[STIX]{x1D6E4}_{0}(N)^{+}$ with square-free level $N$, which are related to ‘Monstrous moonshine conjectures’. Certain aspects of our results are generated from extensive computer analysis; as a result, many of the space-consuming results are made available on a publicly accessible web site. However, we do present in this article specific results for certain low-level groups.
This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$. We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.
In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on symplectic groups and the central value of certain Rankin–Selberg $L$-functions. This identity can be viewed as a refinement to the global Gan–Gross–Prasad conjecture for $\text{Sp}(2n)\times \text{Mp}(2m)$. To support this conjectural identity, we show that when $n=m$ and $n=m\pm 1$, it can be deduced from the Ichino–Ikeda conjecture in some cases via theta correspondences. As a corollary, the conjectural identity holds when $n=m=1$ or when $n=2$, $m=1$ and the automorphic representation on the bigger group is endoscopic.
By constructing suitable Borcherds forms on Shimura curves and using Schofer’s formula for norms of values of Borcherds forms at CM points, we determine all of the equations of hyperelliptic Shimura curves $X_{0}^{D}(N)$. As a byproduct, we also address the problem of whether a modular form on Shimura curves $X_{0}^{D}(N)/W_{D,N}$ with a divisor supported on CM divisors can be realized as a Borcherds form, where $X_{0}^{D}(N)/W_{D,N}$ denotes the quotient of $X_{0}^{D}(N)$ by all of the Atkin–Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems.
We study the $p$-adic variation of triangulations over $p$-adic families of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. In particular, we study certain canonical sub-filtrations of the pointwise triangulations and show that they extend to affinoid neighborhoods of crystalline points. This generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one expects the entire triangulation to extend. We also study the ramification of weight parameters over natural $p$-adic families.
We prove that if $k$ and $\ell$ are sufficiently large, then all the zeros of the weight $k+\ell$ cusp form $E_{k}(z)E_{\ell }(z)-E_{k+\ell }(z)$ in the standard fundamental domain lie on the boundary. We, moreover, find formulas for the number of zeros on the bottom arc with $|z|=1$, and those on the sides with $Re(z)=\pm 1/2$. One important ingredient of the proof is an approximation of the Eisenstein series in terms of the Jacobi theta function.
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over $p$. This characterization of the weights, which is formulated using $p$-adic Hodge theory, is known under mild technical hypotheses if $p>2$. In this paper we give, under the assumption that $p$ is unramified in $F$, a conjectural alternative description for the set of weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct bases for local Galois cohomology spaces in terms of which we identify subspaces that should correspond to ones defined using $p$-adic Hodge theory. The resulting conjecture amounts to an explicit description of wild ramification in reductions of certain crystalline Galois representations. It enables the direct computation of the set of Serre weights of a Galois representation, which we illustrate with numerical examples. A proof of this conjecture has been announced by Calegari, Emerton, Gee and Mavrides.
Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$ be a system of $p$-power roots of a uniformizer $\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$, and define $G_{s}$ (resp. $G_{\infty }$) the absolute Galois group of $K(\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$). In this paper, we study $G_{s}$-equivariantness properties of $G_{\infty }$-equivariant homomorphisms between torsion crystalline representations.
Let $\widetilde{\text{Sp}}(2n)$ be the metaplectic covering of $\text{Sp}(2n)$ over a local field of characteristic zero. The core of the theory of endoscopy for $\widetilde{\text{Sp}}(2n)$ is the geometric transfer of orbital integrals to its elliptic endoscopic groups. The dual of this map, called the spectral transfer, is expected to yield endoscopic character relations which should reveal the internal structure of $L$-packets. As a first step, we characterize the image of the collective geometric transfer in the non-archimedean case, then reduce the spectral transfer to the case of cuspidal test functions by using a simple stable trace formula. In the archimedean case, we establish the character relations and determine the spectral transfer factors by rephrasing the works by Adams and Renard.
We define weight changing operators for automorphic forms on Grassmannians, that is, on orthogonal groups, and investigate their basic properties. We then evaluate their action on theta kernels, and prove that theta lifts of modular forms, in which the theta kernel involves polynomials of a special type, have some interesting differential properties.
One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for $Z=X+iY$ when $Y\longrightarrow 0$.
We study induced representations of the form $\unicode[STIX]{x1D6FF}_{1}\times \unicode[STIX]{x1D6FF}_{2}\rtimes \unicode[STIX]{x1D70E}$, where $\unicode[STIX]{x1D6FF}_{1},\unicode[STIX]{x1D6FF}_{2}$ are irreducible essentially square-integrable representations of general linear group and $\unicode[STIX]{x1D70E}$ is a strongly positive discrete series of classical $p$-adic group, which naturally appear in the nonunitary dual. For $\unicode[STIX]{x1D6FF}_{1}=\unicode[STIX]{x1D6FF}([\unicode[STIX]{x1D708}^{a}\unicode[STIX]{x1D70C}_{1},\unicode[STIX]{x1D708}^{b}\unicode[STIX]{x1D70C}_{1}])$ and $\unicode[STIX]{x1D6FF}_{2}=\unicode[STIX]{x1D6FF}([\unicode[STIX]{x1D708}^{c}\unicode[STIX]{x1D70C}_{2},\unicode[STIX]{x1D708}^{d}\unicode[STIX]{x1D70C}_{2}])$ with $a\geqslant 1$ and $c\geqslant 1$, we determine composition factors of such induced representation.
Euler noted the relation $6^{3}\,=\,3^{3}+4^{3}+5^{3}$ and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determining all perfect powers that are sums of at most 50 consecutive cubes. Our methods include descent, linear forms in two logarithms and Frey–Hellegouarch curves.