We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\{{\it\phi}_{j}(z):j\geq 1\}$ be an orthonormal basis of Hecke–Maass cusp forms with Laplace eigenvalue $1/4+t_{j}^{2}$. Let ${\it\lambda}_{j}(n)$ be the $n$th Fourier coefficient of ${\it\phi}_{j}$ and $d_{3}(n)$ the divisor function of order three. In this paper, by the circle method and the Voronoi summation formula, the average value of the shifted convolution sum for $d_{3}(n)$ and ${\it\lambda}_{j}(n)$ is considered, leading to the estimate
With analytic applications in mind, in particular beyond endoscopy, we initiate the study of the elliptic part of the trace formula. Incorporating the approximate functional equation into the elliptic part, we control the analytic behavior of the volumes of tori that appear in the elliptic part. Furthermore, by carefully choosing the truncation parameter in the approximate functional equation, we smooth out the singularities of orbital integrals. Finally, by an application of Poisson summation we rewrite the elliptic part so that it is ready to be used in analytic applications, and in particular in beyond endoscopy. As a by product we also isolate the contributions of special representations as pointed out in [Beyond endoscopy, in Contributions to automorphic forms, geometry and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 611–697].
We establish the existence of smooth transfer for Guo–Jacquet relative trace formulae in the $p$-adic case. This kind of smooth transfer is a key step towards a generalization of Waldspurger’s result on central values of L-functions of $\text{GL}_{2}$.
In this article we explain how the results in our previous article on ‘algebraic Hecke characters and compatible systems of mod $p$ Galois representations over global fields’ allow one to attach a Hecke character to every cuspidal Drinfeld modular eigenform from its associated crystal that was constructed in earlier work of the author. On the technical side, we prove along the way a number of results on endomorphism rings of ${\it\tau}$-sheaves and crystals. These are needed to exhibit the close relation between Hecke operators as endomorphisms of crystals on the one side and Frobenius automorphisms acting on étale sheaves associated to crystals on the other. We also present some partial results on the ramification of Hecke characters associated to Drinfeld modular eigenforms. An important phenomenon absent from the case of classical modular forms is that ramification can also result from places of modular curves of good but non-ordinary reduction. In an appendix, jointly with Centeleghe we prove some basic results on $p$-adic Galois representations attached to $\text{GL}_{2}$-type cuspidal automorphic forms over global fields of characteristic $p$.
Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$. The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$. We prove the non-triviality of the $p$-adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$. The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$.
We consider a certain family of Kudla–Rapoport cycles on an integral model of a Shimura variety attached to a unitary group of signature (1, 1), and prove that the arithmetic degrees of these cycles are Fourier coefficients of the central derivative of an Eisenstein series of genus 2. The integral model in question parameterizes abelian surfaces equipped with a non-principal polarization and an action of an imaginary quadratic number ring, and in this setting the cycles are degenerate: they may contain components of positive dimension. This result can be viewed as confirmation, in the degenerate setting and for dimension 2, of conjectures of Kudla and Kudla–Rapoport that predict relations between the intersection numbers of special cycles and the Fourier coefficients of automorphic forms.
We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.
We construct explicit bases for spaces of overconvergent $p$-adic modular forms when $p=2,3$ and study their interaction with the Atkin operator. This results in an extension of Lauder’s algorithms for overconvergent modular forms. We illustrate these algorithms with computations of slope sequences of some $2$-adic eigencurves and the construction of Chow–Heegner points on elliptic curves via special values of Rankin triple product L-functions.
Let ${\mathcal{K}}$ be an imaginary quadratic field. Let ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ be irreducible generic cohomological automorphic representation of $\text{GL}(n)/{\mathcal{K}}$ and $\text{GL}(n-1)/{\mathcal{K}}$, respectively. Each of them can be given two natural rational structures over number fields. One is defined by the rational structure on topological cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that, at least if ${\rm\Pi}$ is cuspidal and the weights of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ are in a standard relative position, the critical values of the Rankin–Selberg product $L(s,{\rm\Pi}\times {\rm\Pi}^{\prime })$ are essentially algebraic multiples of the product of the Whittaker periods of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$. We show that, under certain regularity and polarization hypotheses, the Whittaker period of a cuspidal ${\rm\Pi}$ can be given a motivic interpretation, and can also be related to a critical value of the adjoint $L$-function of related automorphic representations of unitary groups. The resulting expressions for critical values of the Rankin–Selberg and adjoint $L$-functions are compatible with Deligne’s conjecture.
We determine the index of five of the seven hypergeometric Calabi–Yau operators that have finite index in $\mathit{Sp}_{4}(\mathbb{Z})$ and in two cases give a complete description of the monodromy group. Furthermore, we find six nonhypergeometric Calabi–Yau operators with finite index in $\mathit{Sp}_{4}(\mathbb{Z})$, most notably a case where the index is one.
In a recent paper, Soundararajan has proved the quantum unique ergodicity conjecture by getting a suitable estimate for the second order moment of the so-called ‘Hecke multiplicative’ functions. In the process of proving this he has developed many beautiful ideas. In this paper we generalize his arguments to a general $k$th power and provide an analogous estimate for the $k$th power moment of the Hecke multiplicative functions. This may be of general interest.
We analyse the $\text{mod}~p$ étale cohomology of the Lubin–Tate tower both with compact support and without support. We prove that there are no supersingular representations in the $H_{c}^{1}$ of the Lubin–Tate tower. On the other hand, we show that in $H^{1}$ of the Lubin–Tate tower appears the $\text{mod}~p$ local Langlands correspondence and the $\text{mod}~p$ local Jacquet–Langlands correspondence, which we define in the text. We discuss the local-global compatibility part of the Buzzard–Diamond–Jarvis conjecture which appears naturally in this context.
Let $K$ be a totally real field. By the asymptotic Fermat’s Last Theorem over$K$ we mean the statement that there is a constant $B_{K}$ such that for any prime exponent $p>B_{K}$, the only solutions to the Fermat equation
are the trivial ones satisfying $abc=0$. With the help of modularity, level lowering and image-of-inertia comparisons, we give an algorithmically testable criterion which, if satisfied by $K$, implies the asymptotic Fermat’s Last Theorem over $K$. Using techniques from analytic number theory, we show that our criterion is satisfied by $K=\mathbb{Q}(\sqrt{d})$ for a subset of $d\geqslant 2$ having density ${\textstyle \frac{5}{6}}$ among the squarefree positive integers. We can improve this density to $1$ if we assume a standard ‘Eichler–Shimura’ conjecture.
Let $K$ be a number field. For any system of semisimple mod $\ell$ Galois representations $\{{\it\phi}_{\ell }:\text{Gal}(\bar{\mathbb{Q}}/K)\rightarrow \text{GL}_{N}(\mathbb{F}_{\ell })\}_{\ell }$ arising from étale cohomology (Definition 1), there exists a finite normal extension $L$ of $K$ such that if we denote ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/K))$ and ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/L))$ by $\bar{{\rm\Gamma}}_{\ell }$ and $\bar{{\it\gamma}}_{\ell }$, respectively, for all $\ell$ and let $\bar{\mathbf{S}}_{\ell }$ be the $\mathbb{F}_{\ell }$-semisimple subgroup of $\text{GL}_{N,\mathbb{F}_{\ell }}$ associated to $\bar{{\it\gamma}}_{\ell }$ (or $\bar{{\rm\Gamma}}_{\ell }$) by Nori’s theory [On subgroups of$\text{GL}_{n}(\mathbb{F}_{p})$, Invent. Math. 88 (1987), 257–275] for sufficiently large $\ell$, then the following statements hold for all sufficiently large $\ell$.
A(i) The formal character of $\bar{\mathbf{S}}_{\ell }{\hookrightarrow}\text{GL}_{N,\mathbb{F}_{\ell }}$ (Definition 1) is independent of $\ell$ and equal to the formal character of $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}{\hookrightarrow}\text{GL}_{N,\mathbb{Q}_{\ell }}$, where $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}$ is the derived group of the identity component of $\mathbf{G}_{\ell }$, the monodromy group of the corresponding semi-simplified $\ell$-adic Galois representation ${\rm\Phi}_{\ell }^{\text{ss}}$.
A(ii) The non-cyclic composition factors of $\bar{{\it\gamma}}_{\ell }$ and $\bar{\mathbf{S}}_{\ell }(\mathbb{F}_{\ell })$ are identical. Therefore, the composition factors of $\bar{{\it\gamma}}_{\ell }$ are finite simple groups of Lie type of characteristic $\ell$ and are cyclic groups.
B(i) The total $\ell$-rank $\text{rk}_{\ell }\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) is equal to the rank of $\bar{\mathbf{S}}_{\ell }$ and is therefore independent of $\ell$.
B(ii) The $A_{n}$-type $\ell$-rank $\text{rk}_{\ell }^{A_{n}}\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) for $n\in \mathbb{N}\setminus \{1,2,3,4,5,7,8\}$ and the parity of $(\text{rk}_{\ell }^{A_{4}}\bar{{\rm\Gamma}}_{\ell })/4$ are independent of $\ell$.
We find defining equations for the Shimura curve of discriminant 15 over $\mathbb{Z}[1/15]$. We then determine the graded ring of automorphic forms over the 2-adic integers, as well as the higher cohomology. We apply this to calculate the homotopy groups of a spectrum of ‘topological automorphic forms’ associated to this curve, as well as one associated to a quotient by an Atkin–Lehner involution.
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.
We compute the $p$-adic $L$-functions of evil Eisenstein series, showing that they factor as products of two Kubota–Leopoldt $p$-adic $L$-functions times a logarithmic term. This proves in particular a conjecture of Glenn Stevens.
We prove the Breuil–Mézard conjecture for two-dimensional potentially
Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values
for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the
multiplicities. We then apply these results to the weight part of Serre’s
conjecture, proving a variety of results including the
Buzzard–Diamond–Jarvis conjecture.
In this paper, we study the structure of the local components of the (shallow, i.e. without $U_{p}$) Hecke algebras acting on the space of modular forms modulo $p$ of level $1$, and relate them to pseudo-deformation rings. In many cases, we prove that those local components are regular complete local algebras of dimension $2$, generalizing a recent result of Nicolas and Serre for the case $p=2$.