We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the automorphic Green function $\mathop{\rm gr}\nolimits _\Gamma $ on quotients of the hyperbolic plane by cofinite Fuchsian groups $\Gamma $, and the canonical Green function $\mathop{\rm gr}\nolimits ^{\rm can}_X$ on the standard compactification $X$ of such a quotient. We use a limiting procedure, starting from the resolvent kernel, and lattice point estimates for the action of $\Gamma $ on the hyperbolic plane to prove an “approximate spectral representation” for $\mathop{\rm gr}\nolimits _\Gamma $. Combining this with bounds on Maaß forms and Eisenstein series for $\Gamma $, we prove explicit bounds on $\mathop{\rm gr}\nolimits _\Gamma $. From these results on $\mathop{\rm gr}\nolimits _\Gamma $ and new explicit bounds on the canonical $(1,1)$-form of $X$, we deduce explicit bounds on $\mathop{\rm gr}\nolimits ^{\rm can}_X$.
We study the limiting behavior of the discrete spectra associated to the principal congruence subgroups of a reductive group over a number field. While this problem is well understood in the cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded rank. For the groups $\text{GL}(n)$ and $\text{SL}(n)$ we show that the suitably normalized spectra converge to the Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for $\text{GL}(n)$ and $\text{SL}(n)$ the contribution of the continuous spectrum is negligible in the limit.
We apply the endoscopic classification of automorphic forms on $U(3)$ to study the growth of the first Betti number of congruence covers of a Picard modular surface. As a consequence, we establish a case of a conjecture of Sarnak and Xue on cohomology growth.
Let $\nu _{f}(n)$ be the $n\mathrm{th}$ normalized Fourier coefficient of a Hecke–Maass cusp form $f$ for ${\rm SL }(2,\mathbb{Z})$ and let $\alpha $ be a real number. We prove strong oscillations of the argument of $\nu _{f}(n)\mu (n) \exp (2\pi i n \alpha )$ as $n$ takes consecutive integral values.
In this paper, we prove that the Sato–Tate conjecture for primitive Maass forms holds on average. We also investigate the rate of convergence in the Sato–Tate conjecture and establish some estimates of the discrepancy with respect to the Sato–Tate measure on the average of primitive Maass forms.
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary even weight, and we explain how to evaluate such forms to high precision using overconvergent methods. Finally, these algorithms are applied to the calculation of conjectural equations for the canonical embedding of p-adically uniformizable rational Shimura curves. We conclude with an example in the case of a genus 4 Shimura curve.
As the simplest case of Langlands functoriality, one expects the existence of the symmetric power $S^n(\pi )$, where $\pi $ is an automorphic representation of ${\rm GL}(2,{\mathbb{A}})$ and ${\mathbb{A}}$ denotes the adeles of a number field $F$. This should be an automorphic representation of ${\rm GL}(N,{\mathbb{A}})$ ($N=n+1)$. This is known for $n=2,3$ and $4$. In this paper we show how to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur representations’, combined with expected results on level-raising, as well as another case (a particular tensor product) of Langlands functoriality. Our methods assume $F$ totally real, and the initial representation $\pi $ of classical type.
In this paper we generalize the work of Harris–Soudry–Taylor and construct the compatible systems of two-dimensional Galois representations attached to cuspidal automorphic representations of cohomological type on ${\rm GL}_2$ over a CM field with a suitable condition on their central characters. We also prove a local-global compatibility statement, up to semi-simplification.
While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms $f_D$ which are naturally defined in terms of binary quadratic forms of discriminant $D$. It was later determined by Kohnen and Zagier that the generating function for the function $f_D$ is a half-integral weight cusp form. A natural preimage of $f_D$ under a differential operator at the heart of the theory of harmonic weak Maass forms was determined by the first two authors and Kohnen. In this paper, we consider the modularity properties of the generating function of these preimages. We prove that although the generating function is not itself modular, it can be naturally completed to obtain a half-integral weight modular object.
When the branch character has root number $- 1$, the corresponding anticyclotomic Katz $p$-adic $L$-function vanishes identically. For this case, we determine the $\mu $-invariant of the cyclotomic derivative of the Katz $p$-adic $L$-function. The result proves, as an application, the non-vanishing
of the anticyclotomic regulator of a self-dual CM modular form with root number $- 1$. The result also plays a crucial role in the recent work of Hsieh
on the Eisenstein ideal approach to a one-sided divisibility of the CM main
conjecture.
Given a prime $p\gt 2$, an integer $h\geq 0$, and a wide open disk $U$ in the weight space $ \mathcal{W} $ of ${\mathbf{GL} }_{2} $, we construct a Hecke–Galois-equivariant morphism ${ \Psi }_{U}^{(h)} $ from the space of analytic families of overconvergent modular
symbols over $U$ with bounded slope $\leq h$, to the corresponding space of analytic families of overconvergent
modular forms, all with ${ \mathbb{C} }_{p} $-coefficients. We show that there is a finite subset $Z$ of $U$ for which this morphism induces a $p$-adic analytic family of isomorphisms relating overconvergent
modular symbols of weight $k$ and slope $\leq h$ to overconvergent modular forms of weight $k+ 2$ and slope $\leq h$.
Generalizing previous results of Deligne–Serre and Taylor, Galois representations are attached to cuspidal automorphic representations of unitary groups whose Archimedean component is a holomorphic limit of discrete series. The main ingredient is a construction of congruences, using the Hasse invariant, that is independent of $q$-expansions.
Using the $\ell $-invariant constructed in our previous paper we prove a
Mazur–Tate–Teitelbaum-style formula for derivatives of $p$-adic $L$-functions of modular forms at trivial zeros. The novelty of this
result is to cover the near-central point case. In the central point case our formula
coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens
and by Kato, Kurihara and Tsuji at the end of the 1990s.
Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function $f(q)$, Ramanujan claims that as $q$ approaches an even-order $2k$ root of unity, we have
We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’ $q$-hypergeometric function which underlies a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank modular form. Along these lines, we show that the Rogers–Fine false $\vartheta $-functions, functions which have not been well understood within the theory of modular forms, specialize to quantum modular forms.
Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds over a number field. We work out their method in detail, showing that essentially all known counterexamples to the integral Hodge conjecture over the complex numbers can be made to work over a number field.
In this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight $\kappa + (1/ 2)$ with $\xi \mathrm{th} $ Fourier coefficient $c(\xi )$ belongs to the Kohnen plus space if and only if $c(\xi )= 0$ unless $\mathop{(- 1)}\nolimits ^{\kappa } \xi $ is congruent to a square modulo $4$. The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen–Zagier formula.
Denote by $ \mathbb{Q} ( \sqrt{- m} )$, with $m$ a square-free positive integer, an imaginary quadratic number field, and by ${ \mathcal{O} }_{- m} $ its ring of integers. The Bianchi groups are the groups ${\mathrm{SL} }_{2} ({ \mathcal{O} }_{- m} )$. In the literature, so far there have been no examples of $p$-torsion in the integral homology of the full Bianchi groups, for $p$ a prime greater than the order of elements of finite order in the Bianchi group, which is at most 6. However, extending the scope of the computations, we can observe examples of torsion in the integral homology of the quotient space, at prime numbers as high as for instance $p= 80\hspace{0.167em} 737$ at the discriminant $- 1747$.
We present an algorithm for computing Borcherds products, which has polynomial runtime. It deals efficiently with the bounds on Fourier expansion indices originating in Weyl chambers. Naive multiplication has exponential runtime due to inefficient handling of these bounds. An implementation of the new algorithm shows that it is also much faster in practice.
In this paper, we present the outcome of vast computer calculations, locating several of the very rare instances of level one cuspidal Bianchi modular forms that are not lifts of elliptic modular forms.
For a given cusp form $\phi $ of even integral weight satisfying certain hypotheses, Waldspurger’s theorem relates the critical value of the $\mathrm{L} $-function of the $n\mathrm{th} $ quadratic twist of $\phi $ to the $n\mathrm{th} $ coefficient of a certain modular form of half-integral weight. Waldspurger’s recipes for these modular forms of half-integral weight are far from being explicit. In particular, they are expressed in the language of automorphic representations and Hecke characters. We translate these recipes into congruence conditions involving easily computable values of Dirichlet characters. We illustrate the practicality of our ‘simplified Waldspurger’ by giving several examples.