To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let k be a positive integer such that k≡3 mod 4, and let N be a positive square-free integer. In this paper, we compute a basis for the two-dimensional subspace Sk/2(Γ0(4N),F) of half-integral weight modular forms associated, via the Shimura correspondence, to a newform F∈Sk−1(Γ0(N)), which satisfies . This is accomplished by using a result of Waldspurger, which allows one to produce a basis for the forms that correspond to a given F via local considerations, once a form in the Kohnen space has been determined.
We study the differential structure of the ring of modular forms for the unit group of the quaternion algebra over ℚ of discriminant 6. Using these results we give an explicit formula for Taylor expansions of the modular forms at the elliptic points. Using appropriate normalizations we show that the Taylor coefficients at the elliptic points of the generators of the ring of modular forms are all rational and 6-integral. This gives a rational structure on the ring of modular forms. We give a recursive formula for computing the Taylor coefficients of modular forms at elliptic points and, as an application, give an algorithm for computing modular polynomials.
In this work, we set up a theory of p-adic modular forms over Shimura curves over totally real fields which allows us to consider also non-integral weights. In particular, we define an analogue of the sheaves of kth invariant differentials over the Shimura curves we are interested in, for any p-adic character. In this way, we are able to introduce the notion of overconvergent modular form of any p-adic weight. Moreover, our sheaves can be put in p-adic families over a suitable rigid analytic space, that parametrizes the weights. Finally, we define Hecke operators, including the U operator, that acts compactly on the space of overconvergent modular forms. We also construct the eigencurve.
Using theta correspondence, we classify the irreducible representations of Mp2n in terms of the irreducible representations of SO2n+1 and determine many properties of this classification. This is a local Shimura correspondence which extends the well-known results of Waldspurger for n=1.
Let X be a Shimura curve of genus zero. In this paper, we first characterize the spaces of automorphic forms on X in terms of Schwarzian differential equations. We then devise a method to compute Hecke operators on these spaces. An interesting by-product of our analysis is the evaluation and other similar identities.
We consider stacks of filtered $\varphi $-modules over rigid analytic spaces and adic spaces. We show that these modules parameterize $p$-adic Galois representations of the absolute Galois group of a $p$-adic field with varying coefficients over an open substack containing all classical points. Further, we study a period morphism (defined by Pappas and Rapoport) from a stack parameterizing integral data, and determine the image of this morphism.
In our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.
In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.
As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.
We derive a formula for Greenberg’s L-invariant of Tate twists of the symmetric sixth power of an ordinary non-CM cuspidal newform of weight ≥4, under some technical assumptions. This requires a ‘sufficiently rich’ Galois deformation of the symmetric cube, which we obtain from the symmetric cube lift to GSp(4)/Q of Ramakrishnan–Shahidi and the Hida theory of this group developed by Tilouine–Urban. The L-invariant is expressed in terms of derivatives of Frobenius eigenvalues varying in the Hida family. Our result suggests that one could compute Greenberg’s L-invariant of all symmetric powers by using appropriate functorial transfers and Hida theory on higher rank groups.
Let f be a modular form of weight k≥2 and level N, let K be a quadratic imaginary field and assume that there is a prime p exactly dividing N. Under certain arithmetic conditions on the level N and the field K, one can attach to this data a p-adic L-function Lp (f,K,s) , as done by Bertolini–Darmon–Iovita–Spieß in [Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411–449]. In the case of p being inert in K, this analytic function of a p-adic variable s vanishes in the critical range s=1,…,k−1 , and one may be interested in the values of its derivative in this range. We construct, for k≥4 , a Chow motive endowed with a distinguished collection of algebraic cycles which encode these values, via the p-adic Abel–Jacobi map. Our main result generalizes the result obtained by Iovita and Spieß in [Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), 333–384], which gives a similar formula for the central value s=k/2 . Even in this case our construction is different from the one found by Iovita and Spieß.
Let χ be the primitive Dirichlet character of conductor 49 defined by χ(3)=ζ for ζ a primitive 42nd root of unity. We explicitly compute the slopes of the U7 operator acting on the space of overconvergent modular forms on X1(49) with weight k and character χ7k−6 or χ8−7k, depending on the embedding of ℚ(ζ)into ℂ7. By applying results of Coleman and of Cohen and Oesterlé, we are then able to deduce the slopes of U7 acting on all classical Hecke newforms of the same weight and character.
We prove new automorphy lifting theorems for essentially conjugate self-dual Galois representations into GLn. Existing theorems require that the residual representation have ‘big’ image, in a certain technical sense. Our theorems are based on a strengthening of the Taylor–Wiles method which allows one to weaken this hypothesis.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).
We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantitative local equidistribution result, and derive a number of consequences. In particular, we show that the computation of the density of low-lying zeros of the spinor L-functions (for restricted test functions) gives global evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of Fourier coefficients of Siegel cusp forms.
We define and study a Lefschetz operator on the equivariant cohomology complex of the Drinfeld and Lubin–Tate towers. For ℓ-adic coefficients we show how this operator induces a geometric realization of the Langlands correspondence composed with the Zelevinski involution for elliptic representations. Combined with our previous study of the monodromy operator, this suggests a possible extension of Arthur’s philosophy for unitary representations occurring in the intersection cohomology of Shimura varieties to the possibly non-unitary representations occurring in the cohomology of Rapoport–Zink spaces. However, our motivation for studying the Lefschetz operator comes from the hope that its geometric nature will enable us to realize the mod-ℓLanglands correspondence due to Vignéras. We discuss this problem and propose a conjecture.
We consider a mod 7 Galois representation attached to a genus 2 Siegel cusp form of level 1 and weight 28 and using some of its Fourier coefficients and eigenvalues computed by N. Skoruppa and the classification of maximal subgroups of PGSp(4,p) we show that its image is as large as possible. This gives a realization of PGSp(4,7) as a Galois group over ℚ and the corresponding number field provides a non-solvable extension of ℚ which ramifies only at 7.
We prove the conjectural relations between Mahler measures and L-values of elliptic curves of conductors 20 and 24. We also present new hypergeometric expressions for L-values of elliptic curves of conductors 27 and 36. Furthermore, we prove a new functional equation for the Mahler measure of the polynomial family (1+X) (1+Y )(X+Y )−αXY, α∈ℝ.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
For V a two-dimensional p-adic representation of Gℚp, we denote by B(V ) the admissible unitary representation of GL2(ℚp) attached to V under the p-adic local Langlands correspondence of GL2(ℚp) initiated by Breuil. In this paper, building on the works of Berger–Breuil and Colmez, we determine the locally analytic vectors B(V )an of B (V )when V is irreducible, crystabelian and Frobenius semisimple with distinct Hodge–Tate weights; this proves a conjecture of Breuil. Using this result, we verify Emerton’s conjecture that dim Ref η⊗ψ (V )=dim Exp η∣⋅∣⊗xψ (B (V )an ⊗(x∣⋅∣∘det ))for those V which are irreducible, crystabelian and Frobenius semisimple.
We construct linear maps from the spaces of quasimodular forms for a discrete subgroup Γ of SL(2,ℝ) to some cohomology spaces of the group Γ and prove that these maps are equivariant with respect to appropriate Hecke operator actions. The results are obtained by using the fact that there is a correspondence between quasimodular forms and certain finite sequences of modular forms.