We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove vanishing of the μ-invariant of the p-adic Katz L-function in N. M. Katz [p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297].
We prove modularity lifting theorems for ℓ-adic Galois representations of any dimension satisfying a unitary type condition and a Fontaine–Laffaille condition at ℓ. This extends the results of Clozel, Harris and Taylor, and the subsequent work by Taylor. The proof uses the Taylor–Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor, applied to Hecke algebras of unitary groups, and results of Labesse on stable base change and descent from unitary groups to GLn.
For p=3 and p=5, we exhibit a finite nonsolvable extension of ℚ which is ramified only at p, proving in the affirmative a conjecture of Gross. Our construction involves explicit computations with Hilbert modular forms.
The local Langlands conjectures imply that to every generic supercuspidal irreducible representation of G2 over a p-adic field, one can associate a generic supercuspidal irreducible representation of either PGSp6 or PGL3. We prove this conjectural dichotomy, demonstrating a precise correspondence between certain representations of G2 and other representations of PGSp6 and PGL3. This correspondence arises from theta correspondences in E6 and E7, analysis of Shalika functionals, and spin L-functions. Our main result reduces the conjectural Langlands parameterization of generic supercuspidal irreducible representations of G2 to a single conjecture about the parameterization for PGSp 6.
We study the possible weights of an irreducible two-dimensional mod p representation of which is modular in the sense that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.
We generalize the method of A. R. Booker (Poles of Artin L-functions and the strong Artin conjecture, Ann. of Math. (2) 158 (2003), 1089–1098; MR 2031863(2004k:11082)) to prove a version of the converse theorem of Jacquet and Langlands with relaxed conditions on the twists by ramified idèle class characters.
We generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture for modular forms at supersingular primes. In particular, we give analogous definitions of the plus and minus Coleman maps for normalised new forms of arbitrary weights and relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition, by generalising works of Pollack and Rubin on CM elliptic curves, we prove the ‘main conjecture’ for CM modular forms.
We give a short and “soft” proof of the asymptotic orthogonality of Fourier coefficients of Poincaré series for classical modular forms as well as for Siegel cusp forms, in a qualitative form.
We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.
Recursive formulae satisfied by the Fourier coefficients of meromorphic modular forms on groups of genus zero have been investigated by several authors. Bruinier et al. [‘The arithmetic of the values of modular functions and the divisors of modular forms’, Compositio Math. 140(3) (2004), 552–566] found recurrences for SL(2,ℤ); Ahlgren [‘The theta-operator and the divisors of modular forms on genus zero subgroups’, Math. Res. Lett.10(5–6) (2003), 787–798] investigated the groups Γ0(p); Atkinson [‘Divisors of modular forms on Γ0(4)’, J. Number Theory112(1) (2005), 189–204] considered Γ0(4), and S. Y. Choi [‘The values of modular functions and modular forms’, Canad. Math. Bull.49(4) (2006), 526–535] found the corresponding formulae for the groups Γ+0(p). In this paper we generalize these results and find recursive formulae for the Fourier coefficients of any meromorphic modular form f on any genus-zero group Γ commensurable with SL(2,ℤ) , including noncongruence groups and expansions at irregular cusps. The form of the recurrence relations is well suited for the computation of the Fourier coefficients of the functions and forms on the groups which occur in monstrous and generalized moonshine. The required initial data has, in many cases, been computed by Norton (private communication).
We prove that, under suitable conditions, a Jacobi Poincaré series of exponential type of integer weight and matrix index does not vanish identically. For the classical Jacobi forms, we construct a basis consisting of the ‘first’ few Poincaré series, and also give conditions, both dependent on and independent of the weight, that ensure the nonvanishing of a classical Jacobi Poincaré series. We also obtain a result on the nonvanishing of a Jacobi Poincaré series when an odd prime divides the index.
It is well known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of SL(2,ℝ), then its translates by the group form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such a hyperbolically convex fundamental domain for any discrete subgroup can be obtained by using Dirichlet’s and Ford’s polygon constructions. However, these two results are not well adapted for the actual construction of a hyperbolically convex fundamental domain due to their nature of construction. A third, and most important and practical, method of obtaining a fundamental domain is through the use of a right coset decomposition as described below. If Γ2 is a subgroup of Γ1 such that Γ1=Γ2⋅{L1,L2,…,Lm} and 𝔽 is the closure of a fundamental domain of the bigger group Γ1, then the set is a fundamental domain of Γ2. One can ask at this juncture, is it possible to choose the right coset suitably so that the set ℛ is a convex hyperbolic polygon? We will answer this question affirmatively for Hecke modular groups.
In this paper, we prove some one level density results for the low-lying zeros of families of L-functions. More specifically, the families under consideration are that of L-functions of holomorphic Hecke eigenforms of level 1 and weight k twisted with quadratic Dirichlet characters and that of cubic and quartic Dirichlet L-functions.
We set up a formalism of endoscopy for metaplectic groups. By defining a suitable transfer factor, we prove an analogue of the Langlands–Shelstad transfer conjecture for orbital integrals over any local field of characteristic zero, as well as the fundamental lemma for units of the Hecke algebra in the unramified case. This generalizes prior work of Adams and Renard in the real case and serves as a first step in studying the Arthur–Selberg trace formula for metaplectic groups.
We prove an explicit formula for periods of certain automorphic forms on SO5 × SO4 along the diagonal subgroup SO4 in terms of L-values. Our formula also involves a quantity from the theory of endoscopy, as predicted by the refined Gross–Prasad conjecture.
We present a level-raising result for families of p-adic automorphic forms for a definite quaternion algebra D over ℚ. The main theorem is an analogue of a theorem for classical automorphic forms due to Diamond and Taylor. We show that certain families of forms old at a prime l intersect with families of l-new forms (at a non-classical point). One of the ingredients in the proof of Diamond and Taylor’s theorem (which also played a role in earlier work of Taylor) is the definition of a suitable pairing on the space of automorphic forms. In our situation one cannot define such a pairing on the infinite dimensional space of p-adic automorphic forms, so instead we introduce a space defined with respect to a dual coefficient system and work with a pairing between the usual forms and the dual space. A key ingredient is an analogue of Ihara’s lemma which shows an interesting asymmetry between the usual and the dual spaces.
We study the action of the Hecke operators Un on the set of hypergeometric functions, as well as on formal power series. We show that the spectrum of these operators on the set of hypergeometric functions is the set {na:n∈ℕ,a∈ℤ}, and that the polylogarithms play an important role in the study of the eigenfunctions of the Hecke operators Un on the set of hypergeometric functions. As a corollary of our results on simultaneous eigenfunctions, we also obtain an apparently unrelated result regarding the behavior of completely multiplicative hypergeometric coefficients.
In this paper, we compute Ford fundamental domains for all genus-zero and genus-one congruence subgroups. This is a continuation of previous work, which found all such groups, including ones that are not subgroups of PSL(2,ℤ). To compute these fundamental domains, an algorithm is given that takes the following as its input: a positive square-free integer f, which determines a maximal discrete subgroup Γ0(f)+ of SL(2,ℝ); a decision procedure to determine whether a given element of Γ0(f)+ is in a subgroup G; and the index of G in Γ0(f)+. The output consists of: a fundamental domain for G, a finite set of bounding isometric circles; the cycles of the vertices of this fundamental domain; and a set of generators of G. The algorithm avoids the use of floating-point approximations. It applies, in principle, to any group commensurable with the modular group. Included as appendices are: MAGMA source code implementing the algorithm; data files, computed in a previous paper, which are used as input to compute the fundamental domains; the data computed by the algorithm for each of the congruence subgroups of genus zero and genus one; and an example, which computes the fundamental domain of a non-congruence subgroup.
We generalize the main result of the paper by Bennett and Mulholland [‘On the diophantine equation xn+yn=2αpz2’, C. R. Math. Acad. Sci. Soc. R. Can.28 (2006), 6–11] concerning the solubility of the diophantine equation xn+yn=2αpz2. We also demonstrate, by way of examples, that questions about solubility of a class of diophantine equations of type (3,3,p) or (4,2,p) can be reduced, in certain cases, to studying several equations of the type (p,p,2).