We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Beilinson [Higher regulators and values of L-functions, Itogi Nauki i Tekhniki Seriya Sovremennye Problemy Matematiki Noveishie Dostizheniya (Current problems in mathematics), vol. 24 (Vserossiisky Institut Nauchnoi i Tekhnicheskoi Informatsii, Moscow, 1984), 181–238] obtained a formula relating the special value of the L-function of H2 of a product of modular curves to the regulator of an element of a motivic cohomology group, thus providing evidence for his general conjectures on special values of L-functions. In this paper we prove a similar formula for the L-function of the product of two Drinfeld modular curves, providing evidence for an analogous conjecture in the case of function fields.
In a paper by Badulescu [Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), 383–438], results on the global Jacquet–Langlands correspondence, (weak and strong) multiplicity-one theorems and the classification of automorphic representations for inner forms of the general linear group over a number field were established, under the assumption that the local inner forms are split at archimedean places. In this paper, we extend the main local results of that article to archimedean places so that the above condition can be removed. Along the way, we collect several results about the unitary dual of general linear groups over ℝ, ℂ or ℍ which are of independent interest.
This work is the geometric part of our proof of the weighted fundamental lemma, which is an extension of Ngô Bao Châu’s proof of the Langlands–Shelstad fundamental lemma. Ngô’s approach is based on a study of the elliptic part of the Hichin fibration. The total space of this fibration is the algebraic stack of Hitchin bundles and its base space is the affine space of ‘characteristic polynomials’. Over the elliptic set, the Hitchin fibration is proper and the number of points of its fibers over a finite field can be expressed in terms of orbital integrals. In this paper, we study the Hitchin fibration over an open set larger than the elliptic set, namely the ‘generically regular semi-simple set’. The fibers are in general neither of finite type nor separated. By analogy with Arthur’s truncation, we introduce the substack of ξ-stable Hitchin bundles. We show that it is a Deligne–Mumford stack, smooth over the base field and proper over the base space of ‘characteristic polynomials’. Moreover, the number of points of the ξ-stable fibers over a finite field can be expressed as a sum of weighted orbital integrals, which appear in the Arthur–Selberg traceformula.
We prove a mean-value result for derivatives of L-functions at the center of the critical strip for a family of forms obtained by twisting a fixed form by quadratic characters with modulus which can be represented as sum of two squares. Such a family of forms is related to elliptic fibrations given by the equation q(t)y2=f(x) where q(t)=t2+1 and f(x) is a cubic polynomial. The aim of the paper is to establish a prototype result for such quadratic families. Though our method can be generalized to prove similar results for any positive definite quadratic form in place of sum of two squares, we refrain from doing so to keep the presentation as clear as possible.
We prove the semisimplicity conjecture for A-motives over finitely generated fields K. This conjecture states that the rational Tate modules V𝔭(M) of a semisimple A-motive M are semisimple as representations of the absolute Galois group of K. This theorem is in analogy with known results for abelian varieties and Drinfeld modules, and has been sketched previously by Tamagawa. We deduce two consequences of the theorem for the algebraic monodromy groups G𝔭(M) associated to an A-motive M by Tannakian duality. The first requires no semisimplicity condition on M and states that G𝔭(M) may be identified naturally with the Zariski closure of the image of the absolute Galois group of K in the automorphism group of V𝔭(M). The second states that the connected component of G𝔭(M) is reductive if M is semisimple and has a separable endomorphism algebra.
In a previous paper, the potential automorphy of certain Galois representations to GLn for n even was established, following the work of Harris, Shepherd–Barron and Taylor and using the lifting theorems of Clozel, Harris and Taylor. In this paper, we extend those results to n=3 and n=5, and conditionally to all other odd n. The key additional tools necessary are results which give the automorphy or potential automorphy of symmetric powers of elliptic curves, most notably those of Gelbert, Jacquet, Kim, Shahidi and Harris.
We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-adic overconvergent eigenforms over ℚ to the case of p-adic overconvergent Hilbert eigenforms over totally real fields F, under the assumption that p splits completely in F. This includes weight-one forms and has applications to generalisations of Buzzard and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.
Abstract. Let $H$ be the Hilbert class field of a $\text{CM}$ number field $K$ with maximal totally real subfield $F$ of degree $n$ over $\mathbb{Q}$. We evaluate the second term in the Taylor expansion at $s\,=\,0$ of the Galois-equivariant $L$-function ${{\Theta }_{{{S}_{\infty }}\,}}\left( s \right)$ associated to the unramified abelian characters of $\text{Gal}\left( H/K \right)$. This is an identity in the group ring $\mathbb{C}\left[ \text{Gal}\left( H/K \right) \right]$ expressing $\Theta _{{{S}_{\infty }}}^{(n)}\,\left( 0 \right)$ as essentially a linear combination of logarithms of special values $\left\{ \Psi ({{z}_{\sigma }}) \right\}$, where $\Psi :\,{{\mathbb{H}}^{n}}\,\to \,\mathbb{R}$ is a Hilbert modular function for a congruence subgroup of $S{{L}_{2}}\left( {{\mathcal{O}}_{F}} \right)$ and $\left\{ {{z}_{\sigma }}\,:\,\sigma \,\in \,\text{Gal}\left( H/K \right) \right\}$ are $\text{CM}$ points on a universal Hilbert modular variety. We apply this result to express the relative class number ${{h}_{H}}/{{h}_{K}}$ as a rational multiple of the determinant of an $\left( {{h}_{K}}\,-\,1 \right)\,\times \,\left( {{h}_{K}}\,-\,1 \right)$ matrix of logarithms of ratios of special values $\Psi ({{z}_{\sigma }})$, thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for $\Psi ({{z}_{\sigma }})$ in terms of exponentials of special values of $L$-functions.
We introduce a differential operator on quasimodular polynomials that corresponds to the derivative operator on quasimodular forms. We then prove that such a differential operator is compatible with a heat operator on Jacobi-like forms in certain cases. These results show in those cases that the derivative operator on quasimodular forms corresponds to a heat operator on Jacobi-like forms.
Following R. A. Rankin’s method, D. Zagier computed the nth Rankin–Cohen bracket of a modular form g of weight k1 with the Eisenstein series of weight k2, computed the inner product of this Rankin–Cohen bracket with a cusp form f of weight k=k1+k2+2n and showed that this inner product gives, up to a constant, the special value of the Rankin–Selberg convolution of f and g. This result was generalized to Jacobi forms of degree 1 by Y. Choie and W. Kohnen. In this paper, we generalize this result to Jacobi forms defined over ℋ×ℂ(g,1).
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
In this paper we address the issue of existence of cusp forms by using an extension and refinement of a classic method involving (adelic) compactly supported Poincaré series. As a consequence of our adelic approach, we also deal with cusp forms for congruence subgroups.
Colmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a -representation W of by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W) explicitly and we prove that if W is irreducible and dim (W)=2, then Ω(W) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.
We prove algebraic transformations for the generating series of three Apéry-like sequences. As application, we provide new binomial representations for the sequences. We also illustrate a method that derives three new series for 1/π from a classical Ramanujan’s series.
Let G be the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8 of rank four. The cohomology of the space of automorphic forms on G has a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomology HqEis(G,E) of G in the case of regular coefficients E. It is spanned only by holomorphic Eisenstein series. For non-regular coefficients E we really have to detect the poles of our Eisenstein series. Since G is not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), 297–355; F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolic P0 of G. Having collected this information, we determine the square-integrable Eisenstein cohomology supported by P0 with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.
Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a totally real number field. Under the assumptions that ρ has a large image and admits a low-weight crystalline modular deformation we show that any low-weight crystalline deformation of ρ unramified outside a finite set of primes will be modular. We follow the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-type lemma for the local component at ρ of the middle degree cohomology of a Hilbert modular variety. As an application we relate the algebraic p-part of the value at one of the adjoint L-function associated with a Hilbert modular newform to the cardinality of the corresponding Selmer group.
For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.
We break the convexity bound in the t-aspect for L-functions attached to cusp forms f for GL2(k) over arbitrary number fields k. The argument uses asymptotics with error term with a power saving, for second integral moments over spectral families of twists L(s,f⊗χ) by Grossencharacters χ, from our previous paper on integral moments.
We identify the majority of Siegel modular eigenforms in degree four and weights up to 16 as being Duke–Imamoḡlu–Ikeda or Miyawaki–Ikeda lifts. We give two examples of eigenforms that are probably also lifts but of an undiscovered type.