We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the density of integral binary forms of given degree that have squarefree discriminant, proving for the first time that the lower density is positive. Furthermore, we determine the density of integral binary forms that cut out maximal orders in number fields. The latter proves, in particular, an ‘arithmetic Bertini theorem’ conjectured by Poonen for ${\mathbb {P}}^1_{\mathbb {Z}}$.
Our methods also allow us to prove that there are $\gg X^{1/2+1/(n-1)}$ number fields of degree n having associated Galois group $S_n$ and absolute discriminant less than X, improving the best previously known lower bound of $\gg X^{1/2+1/n}$.
Finally, our methods correct an error in and thus resurrect earlier (retracted) results of Nakagawa on lower bounds for the number of totally unramified $A_n$-extensions of quadratic number fields of bounded discriminant.
Let $\mathcal {O}$ be a maximal order in the quaternion algebra over $\mathbb Q$ ramified at p and $\infty $. We prove two theorems that allow us to recover the structure of $\mathcal {O}$ from limited information. The first says that for any infinite set S of integers coprime to p, $\mathcal {O}$ is spanned as a ${\mathbb {Z}}$-module by elements with norm in S. The second says that $\mathcal {O}$ is determined up to isomorphism by its theta function.
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$. Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$, then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$, the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$, where ${3\le p\le n-2}$, the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$, $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $, where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$. The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].
To any k-dimensional subspace of $\mathbb {Q}^n$ one can naturally associate a point in the Grassmannian $\mathrm {Gr}_{n,k}(\mathbb {R})$ and two shapes of lattices of rank k and $n-k$, respectively. These lattices originate by intersecting the k-dimensional subspace and its orthogonal with the lattice $\mathbb {Z}^n$. Using unipotent dynamics, we prove simultaneous equidistribution of all of these objects under congruence conditions when $(k,n) \neq (2,4)$.
We prove that there exist infinitely many coprime numbers a, b, c with $a+b=c$ and $c>\operatorname {\mathrm {rad}}(abc)\exp (6.563\sqrt {\log c}/\log \log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. Our work builds on that of van Frankenhuysen (J. Number Theory 82(2000), 91–95) who proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt {2\delta /e}$ where $\delta $ is a constant such that all unimodular lattices of sufficiently large dimension n contain a nonzero vector with $\ell _1$-norm at most $n/\delta $.
We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided and involves Hermitian lattices over number fields.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of
$n+2$
mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The
$E_7$
,
$E_8$
and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related to the boundedness of resolvents of the Laplacian and the boundedness of $L^{p}$ norms of eigenfunctions of the Laplacian. We formulate a conjecture and partially prove it.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice
$ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $
with balls of radius
$ 2 $
under the
$ \ell _1 $
metric (or, equivalently, a covering of the integer lattice
$ \mathbb {Z} ^n $
with balls of radius
$ 1 $
under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of
$ A_n $
. This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets.
We define certain arithmetic derivatives on
$\mathbb {Z}$
that respect the Leibniz rule, are additive for a chosen equation
$a+b=c$
, and satisfy a suitable nondegeneracy condition. Using Geometry of Numbers, we unconditionally show their existence with controlled size. We prove that any power-saving improvement on our size bounds would give a version of the
$abc$
Conjecture. In fact, we show that the existence of sufficiently small arithmetic derivatives in our sense is equivalent to the
$abc$
Conjecture. Our results give an explicit manifestation of an analogy suggested by Vojta in the eighties, relating Geometry of Numbers in arithmetic to derivatives in function fields and Nevanlinna theory. In addition, our construction formalizes the widespread intuition that the
$abc$
Conjecture should be related to arithmetic derivatives of some sort.
Let $X$ be a normal and geometrically integral projective variety over a global field $K$ and let $\bar {D}$ be an adelic ${\mathbb {R}}$-Cartier divisor on $X$. We prove a conjecture of Chen, showing that the essential minimum $\zeta _{\mathrm {ess}}(\bar {D})$ of $\bar {D}$ equals its asymptotic maximal slope under mild positivity assumptions. As an application, we see that $\zeta _{\mathrm {ess}}(\bar {D})$ can be read on the Okounkov body of the underlying divisor $D$ via the Boucksom–Chen concave transform. This gives a new interpretation of Zhang's inequalities on successive minima and a criterion for equality generalizing to arbitrary projective varieties a result of Burgos Gil, Philippon and Sombra concerning toric metrized divisors on toric varieties. When applied to a projective space $X = {\mathbb {P}}_K^{d}$, our main result has several applications to the study of successive minima of hermitian vector spaces. We obtain an absolute transference theorem with a linear upper bound, answering a question raised by Gaudron. We also give new comparisons between successive slopes and absolute minima, extending results of Gaudron and Rémond.
Let \[||x||\] denote the distance from \[x \in \mathbb{R}\] to the nearest integer. In this paper, we prove a new existence and density result for matrices \[A \in {\mathbb{R}^{m \times n}}\] satisfying the inequality
where q ranges in \[{\mathbb{Z}^n}\] and Ai denote the rows of the matrix A. This result extends previous work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently available. We therefore develop a substantially different method, based on Cantor-like set constructions of Badziahin and Velani. Matrices with the above property also appear to have very small sums of reciprocals of fractional parts. This fact helps us to shed light on a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in higher dimension.
Let G be a Lie group, let
$\Gamma \subset G$
be a discrete subgroup, let
$X=G/\Gamma $
and let f be an affine map from X to itself. We give conditions on a submanifold Z of X that guarantee that the set of points
$x\in X$
with f-trajectories avoiding Z is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on X. This has applications in constructing exceptional geodesics on locally symmetric spaces and in non-density of the set of values of certain functions at integer points.
Eigenfunctions of the Fourier transform with prescribed zeros played a major role in the proof that the E8 and the Leech lattice give the best sphere packings in respective dimensions 8 and 24 by Cohn, Kumar, Miller, Radchenko and Viazovska. The functions used for a linear programming argument were constructed as Laplace transforms of certain modular and quasimodular forms. Similar constructions were used by Cohn and Gonçalves to find a function satisfying an optimal uncertainty principle in dimension 12. This paper gives a unified view on these constructions and develops the machinery to find the underlying forms in all dimensions divisible by 4. Furthermore, the positivity of the Fourier coefficients of the quasimodular forms occurring in this context is discussed.
Let
${\mathbf {G}}$
be a semisimple algebraic group over a number field K,
$\mathcal {S}$
a finite set of places of K,
$K_{\mathcal {S}}$
the direct product of the completions
$K_{v}, v \in \mathcal {S}$
, and
${\mathcal O}$
the ring of
$\mathcal {S}$
-integers of K. Let
$G = {\mathbf {G}}(K_{\mathcal {S}})$
,
$\Gamma = {\mathbf {G}}({\mathcal O})$
and
$\pi :G \rightarrow G/\Gamma $
the quotient map. We describe the closures of the locally divergent orbits
${T\pi (g)}$
where T is a maximal
$K_{\mathcal {S}}$
-split torus in G. If
$\# S = 2$
then the closure
$ \overline{T\pi (g)}$
is a finite union of T-orbits stratified in terms of parabolic subgroups of
${\mathbf {G}} \times {\mathbf {G}}$
and, consequently,
$\overline{T\pi (g)}$
is homogeneous (i.e.
$\overline{T\pi (g)}= H\pi (g)$
for a subgroup H of G) if and only if
${T\pi (g)}$
is closed. On the other hand, if
$\# \mathcal {S}> 2$
and K is not a
$\mathrm {CM}$
-field then
$\overline {T\pi (g)}$
is homogeneous for
${\mathbf {G}} = \mathbf {SL}_{n}$
and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for
${\mathbf {G}} \neq \mathbf {SL}_{n}$
. As an application, we prove that
$\overline {f({\mathcal O}^{n})} = K_{\mathcal {S}}$
for the class of non-rational locally K-decomposable homogeneous forms
$f \in K_{\mathcal {S}}[x_1, \ldots , x_{n}]$
.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centralizer and normalizer of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralizers, but large normalizers. In particular, we discuss several systems where the normalizer is an infinite extension of the centralizer, including the visible lattice points and the k-free integers in some real quadratic number fields.
In 1945–1946, C. L. Siegel proved that an $n$-dimensional lattice $\unicode[STIX]{x1D6EC}$ of determinant $\text{det}(\unicode[STIX]{x1D6EC})$ has at most $m^{n^{2}}$ different sublattices of determinant $m\cdot \text{det}(\unicode[STIX]{x1D6EC})$. In 1997, the exact number of the different sublattices of index $m$ was determined by Baake. We present a systematic treatment for counting the sublattices and derive a formula for the number of the sublattice classes under unimodular equivalence.
We establish various new results on a problem proposed by Mahler [Some suggestions for further research. Bull. Aust. Math. Soc.29 (1984), 101–108] concerning rational approximation to fractal sets by rational numbers inside and outside the set in question. Some of them provide a natural continuation and improvement of recent results of Broderick, Fishman and Reich, and Fishman and Simmons. A key feature is that many of our new results apply to more general, multi-dimensional fractal sets and require only mild assumptions on the iterated function system. Moreover, we provide a non-trivial lower bound for the distance of a rational number $p/q$ outside the Cantor middle-third set $C$ to the set $C$, in terms of the denominator $q$. We further discuss patterns of rational numbers in fractal sets. We highlight two of them: firstly, an upper bound for the number of rational (algebraic) numbers in a fractal set up to a given height (and degree) for a wide class of fractal sets; and secondly, we find properties of the denominator structure of rational points in ‘missing-digit’ Cantor sets, generalizing claims of Nagy and Bloshchitsyn.
Let ${\mathcal{A}}$ be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number of primitive lattice points in the dilate $t{\mathcal{A}}$ is asymptotically $\frac{6}{\unicode[STIX]{x1D70B}^{2}}\text{Area}(t{\mathcal{A}})$ as $t\rightarrow \infty$. We show that the error term is both $\unicode[STIX]{x1D6FA}_{\pm }(t\sqrt{\log \log t})$ and $O(t(\log t)^{2/3}(\log \log t)^{4/3})$. Both bounds extend (to the above class of polygons) known results for the isosceles right triangle, which appear in the literature as bounds for the error term in the summatory function for Euler’s $\unicode[STIX]{x1D719}(n)$.