We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by mathematical aspects of origami, Erik Demaine asked which points in the plane can be constructed by using lines whose angles are multiples of $\pi /n$ for some fixed $n$. This has been answered for some specific small values of $n$ including $n=3,4,5,6,8,10,12,24$. We answer this question for arbitrary $n$. The set of points is a subring of the complex plane $\mathbf {C}$, lying inside the cyclotomic field of $n$th roots of unity; the precise description of the ring depends on whether $n$is prime or composite. The techniques apply in more general situations, for example, infinite sets of angles, or more general constructions of subsets of the plane.
We derive a formula for Greenberg’s L-invariant of Tate twists of the symmetric sixth power of an ordinary non-CM cuspidal newform of weight ≥4, under some technical assumptions. This requires a ‘sufficiently rich’ Galois deformation of the symmetric cube, which we obtain from the symmetric cube lift to GSp(4)/Q of Ramakrishnan–Shahidi and the Hida theory of this group developed by Tilouine–Urban. The L-invariant is expressed in terms of derivatives of Frobenius eigenvalues varying in the Hida family. Our result suggests that one could compute Greenberg’s L-invariant of all symmetric powers by using appropriate functorial transfers and Hida theory on higher rank groups.
Cuntz and Li have defined a C*-algebra associated to any integral domain, using generators and relations, and proved that it is simple and purely infinite and that it is stably isomorphic to a crossed product of a commutative C*-algebra. We give an approach to a class of C*-algebras containing those studied by Cuntz and Li, using the general theory of C*-dynamical systems associated to certain semidirect product groups. Even for the special case of the Cuntz–Li algebras, our development is new.
We prove new automorphy lifting theorems for essentially conjugate self-dual Galois representations into GLn. Existing theorems require that the residual representation have ‘big’ image, in a certain technical sense. Our theorems are based on a strengthening of the Taylor–Wiles method which allows one to weaken this hypothesis.
Let K be a number field. For f∈K[x], we give an upper bound on the least positive integer T=T(f) such that no quotient of two distinct Tth powers of roots of f is a root of unity. For each ε>0 and each f∈ℚ[x] of degree d≥d(ε) we prove that . In the opposite direction, we show that the constant 2cannot be replaced by a number smaller than 1 . These estimates are useful in the study of degenerate and nondegenerate linear recurrence sequences over a number field K.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0in K[x]and the integer m≥2is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x)with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
Let T be an algebraic torus over ℚ such that T(ℝ) is compact. Assuming the generalized Riemann hypothesis, we give a lower bound for the size of the class group of T modulo its n-torsion in terms of a small power of the discriminant of the splitting field of T. As a corollary, we obtain an upper bound on the n-torsion in that class group. This generalizes known results on the structure of class groups of complex multiplication fields.
Let be a commutative algebraic group defined over a number field K. For a prime ℘ in K where has good reduction, let N℘,n be the number of n-torsion points of the reduction of modulo ℘ where n is a positive integer. When is of dimension one and n is relatively prime to a fixed finite set of primes depending on , we determine the average values of N℘,n as the prime ℘ varies. This average value as a function of n always agrees with a divisor function.
We provide evaluations of several recently studied higher and multiple Mahler measures using log-sine integrals. This is complemented with an analysis of generating functions and identities for log-sine integrals which allows the evaluations to be expressed in terms of zeta values or more general polylogarithmic terms. The machinery developed is then applied to evaluation of further families of multiple Mahler measures.
For a real quadratic field , let tk be the exact power of 2 dividing the class number hk of k and ηk the fundamental unit of k. The aim of this paper is to study tk and the value of Nk/ℚ(ηk). Various methods have been successfully applied to obtain results related to this topic. The idea of our work is to select a special circular unit ℰk of k and investigate C(k)=〈±ℰk 〉. We examine the indices [E(k):C(k)]and [C(k):CS (k)] , where E(k)is the group of units of k, and CS (k)is that of circular units of k defined by Sinnott. Then by using the Sinnott’s index formula [E(k):CS (k)]=hk, we obtain as much information about tk and Nk/ℚ (ηk)as possible.
We prove the conjectural relations between Mahler measures and L-values of elliptic curves of conductors 20 and 24. We also present new hypergeometric expressions for L-values of elliptic curves of conductors 27 and 36. Furthermore, we prove a new functional equation for the Mahler measure of the polynomial family (1+X) (1+Y )(X+Y )−αXY, α∈ℝ.
Let k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors of length two over k. We construct a group stack Ĝ over k, the metaplectic extension of the Greenberg realization of . We also construct a geometric analogue of the Weil representation of Ĝ, this is a triangulated category on which Ĝ acts by functors. This triangulated category and the action are geometric in a suitable sense.
Let G be a subgroup of the symmetric group Sn, and let δG=∣Sn/G∣−1 where ∣Sn/G∣ is the index of G in Sn. Then there are at most On,ϵ(Hn−1+δG+ϵ) monic integer polynomials of degree n that have Galois group G and height not exceeding H, so there are only a “few” polynomials having a “small” Galois group.
We prove the μ-part of the main conjecture for modular forms along the anticyclotomic Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit formula for the algebraic μ-invariant, and then using results of Ribet and Takahashi showing that our formula agrees with Vatsal’s formula for the analytic μ-invariant.
Starting with a paper of Jacobson from the 1960s, many authors became interested in characterizing all algebraic number fields in which each integer is the sum of pairwise distinct units. Although there exist many partial results for number fields of low degree, a full characterization of these number fields is still not available. Narkiewicz and Jarden posed an analogous question for sums of units that are not necessarily distinct. In this paper we propose a generalization of these problems. In particular, for a given rational integer n we consider the following problem. Characterize all number fields for which every integer is a linear combination of finitely many units εi in a way that the coefficients ai∈ℕ are bounded by n. The paper gives several partial results on this problem. In our proofs we exploit the fact that these representations are related to symmetric beta expansions with respect to Pisot bases.
We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real fields with Galois group 𝒢, where K is a global number field and 𝒢 is a p-adic Lie group of dimension one for an odd prime p. We attach to each finite Galois CM-extension L/K with Galois group G a module SKu(L/K)over the center of the group ring ℤG which coincides with the Sinnott–Kurihara ideal if G is abelian. We state a conjecture on the integrality of SKu (L/K)which follows from the equivariant Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing of the Iwasawa μ-invariant, we compute Fitting invariants of certain Iwasawa modules via the EIMC, and we show that this implies the minus part of the ETNC at p for an infinite class of (non-abelian) Galois CM-extensions of number fields which are at most tamely ramified above p, provided that (an appropriate p-part of) the integrality conjecture holds.
We prove vanishing of the μ-invariant of the p-adic Katz L-function in N. M. Katz [p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297].
We prove modularity lifting theorems for ℓ-adic Galois representations of any dimension satisfying a unitary type condition and a Fontaine–Laffaille condition at ℓ. This extends the results of Clozel, Harris and Taylor, and the subsequent work by Taylor. The proof uses the Taylor–Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor, applied to Hecke algebras of unitary groups, and results of Labesse on stable base change and descent from unitary groups to GLn.
For p=3 and p=5, we exhibit a finite nonsolvable extension of ℚ which is ramified only at p, proving in the affirmative a conjecture of Gross. Our construction involves explicit computations with Hilbert modular forms.
The local Langlands conjectures imply that to every generic supercuspidal irreducible representation of G2 over a p-adic field, one can associate a generic supercuspidal irreducible representation of either PGSp6 or PGL3. We prove this conjectural dichotomy, demonstrating a precise correspondence between certain representations of G2 and other representations of PGSp6 and PGL3. This correspondence arises from theta correspondences in E6 and E7, analysis of Shalika functionals, and spin L-functions. Our main result reduces the conjectural Langlands parameterization of generic supercuspidal irreducible representations of G2 to a single conjecture about the parameterization for PGSp 6.