To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a polynomial ergodic theorem for actions of the affine group of a countable field K. As an application, we deduce—via a variant of Furstenberg’s correspondence principle—that for fields of characteristic zero, any ‘large’ set $E\subset K$ contains ‘many’ patterns of the form $\{p(u)+v,uv\}$, for every non-constant polynomial $p(x)\in K[x]$. Our methods are flexible enough that they allow us to recover analogous density results in the setting of finite fields and, with the aid of a finitistic variant of Bergelson’s ‘colouring trick’, show that for $r\in \mathbb N$ fixed, any r-colouring of a large enough finite field will contain monochromatic patterns of the form $\{u,p(u)+v,uv\}$. In a different direction, we obtain a double ergodic theorem for actions of the affine group of a countable field. An adaptation of the argument for affine actions of finite fields leads to a generalization of a theorem of Shkredov. Finally, to highlight the utility of the aforementioned finitistic ‘colouring trick’, we provide a conditional, elementary generalization of Green and Sanders’ $\{u,v,u+v,uv\}$ theorem.
In this paper, we establish an asymptotic formula for the twisted second moments of Dirichlet $L$-functions with one twist when averaged over all primitive Dirichlet characters of modulus $R$, where $R$ is a monic polynomial in $\mathbb{F}_q[T]$.
We lay down the foundations of the Eigenvalue Method in coding theory. The method uses modern algebraic graph theory to derive upper bounds on the size of error-correcting codes for various metrics, addressing major open questions in the field. We identify the core assumptions that allow applying the Eigenvalue Method, test it for multiple well-known classes of error-correcting codes, and compare the results with the best bounds currently available. By applying the Eigenvalue Method, we obtain new bounds on the size of error-correcting codes that often improve the state of the art. Our results show that spectral graph theory techniques capture structural properties of error-correcting codes that are missed by classical coding theory approaches.
This note provides an alternative proof of a theorem by Li et al. [‘On the primitivity of some trinomials over finite fields’, Adv. Math. (China)44(3) (2015), 387–393] regarding the nonprimitivity of the trinomial $x^{n}+ax+b$ over $\mathbb {F}_{q^{m}}$ under the condition $a^{n}b^{1-n}\in \mathbb {F}_{q^{u}}^{\ast }$ for some positive integer $u<m$. We extend this result to the trinomial $x^{n}+a^{k}x^{k}+b^{k}$, showing its nonprimitivity over $\mathbb {F}_{q^{m}}$ when $ a^{n}b^{k-n}\in \mathbb {F}_{q^{u}}^{\ast }$ for some positive integer $u<m$. While the existing proof relies on the theory of linear recurrences over finite fields, our approach is short and self-contained, requiring no prior knowledge of this area.
Granville–Soundararajan, Harper–Nikeghbali–Radziwiłł and Heap–Lindqvist independently established an asymptotic for the even natural moments of partial sums of random multiplicative functions defined over integers. Building on these works, we study the even natural moments of partial sums of Steinhaus random multiplicative functions defined over function fields. Using a combination of analytic arguments and combinatorial arguments, we obtain asymptotic expressions for all the even natural moments in the large field limit and large degree limit, as well as an exact expression for the fourth moment.
Let $A\ \mathrm{and}\ B$ be subsets of $(\mathbb {Z}/p^r\mathbb {Z})^2$. In this note, we provide conditions on the densities of A and B such that $|gA-B|\gg p^{2r}$ for a positive proportion of $g\in SO_2(\mathbb {Z}/p^r\mathbb {Z})$. The conditions are sharp up to constant factors in the unbalanced case, and the proof makes use of tools from discrete Fourier analysis and results in restriction/extension theory.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
Let q be a power of a prime p, let $\mathbb F_q$ be the finite field with q elements and, for each nonconstant polynomial $F\in \mathbb F_{q}[X]$ and each integer $n\ge 1$, let $s_F(n)$ be the degree of the splitting field (over $\mathbb F_q$) of the iterated polynomial $F^{(n)}(X)$. In 1999, Odoni proved that $s_A(n)$ grows linearly with respect to n if $A\in \mathbb F_q[X]$ is an additive polynomial not of the form $aX^{p^h}$; moreover, if q = p and $B(X)=X^p-X$, he obtained the formula $s_{B}(n)=p^{\lceil \log_p n\rceil}$. In this paper we note that $s_F(n)$ grows at least linearly unless $F\in \mathbb F_q[X]$ has an exceptional form and we obtain a stronger form of Odoni’s result, extending it to affine polynomials. In particular, we prove that if A is additive, then $s_A(n)$ resembles the step function $p^{\lceil \log_p n\rceil}$ and we indeed have the identity $s_A(n)=\alpha p^{\lceil \log_p \beta n\rceil}$ for some $\alpha, \beta\in \mathbb Q$, unless A presents a special irregularity of dynamical flavour. As applications of our main result, we obtain statistics for periodic points of linear maps over $\mathbb F_{q^i}$ as $i\to +\infty$ and for the factorization of iterates of affine polynomials over finite fields.
In this article, we establish a function field analog of Jacobi’s theorem on sums of squares and analyze its moments. Our approach involves employing two distinct techniques to derive the main results concerning asymptotic formulas for the moments. The first technique utilizes Dirichlet series framework to derive asymptotic formulas in the limit of large finite fields, specifically when the characteristic of $\mathbb {F}_q[T]$ becomes large. The second technique involves effectively partitioning the set of polynomials of a fixed degree, providing asymptotic formulas in the limit of large polynomial degree.
Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we build upon and extend some results of Sawin and Shusterman (2022). These results include bounds for exponential sums weighted by the Möbius function and a level of distribution for irreducible polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond 1/2.
Let p be a prime, $q=p^n$, and $D \subset \mathbb {F}_q^*$. A celebrated result of McConnel states that if D is a proper subgroup of $\mathbb {F}_q^*$, and $f:\mathbb {F}_q \to \mathbb {F}_q$ is a function such that $(f(x)-f(y))/(x-y) \in D$ whenever $x \neq y$, then $f(x)$ necessarily has the form $ax^{p^j}+b$. In this notes, we give a sufficient condition on D to obtain the same conclusion on f. In particular, we show that McConnel’s theorem extends if D has small doubling.
Let f(x) and g(x) be polynomials in $\mathbb F_{2}[x]$ with ${\rm deg}\text{ } f=n$. It is shown that for $n\gg 1$, there is an $g_{1}(x)\in \mathbb F_{2}[x]$ with ${\rm deg}\text{ } g_{1}\leqslant \max\{{\rm deg}\text{ } g, 6.7\log n\}$ and $g(x)-g_{1}(x)$ having $ \lt 6.7\log n$ terms such that $\gcd(f(x), g_{1}(x))=1$. As an application, it is established using a result of Dubickas and Sha that given $f(x)\in \mathbb F_{2}[x]$ of degree $n\geqslant 1$, there is a separable $g(x)\in 2[x]$ with ${\rm deg}\text{ } g= {\rm deg}\text{ } f$ and satisfying that $f(x)-g(x)$ has $\leqslant 6.7\log n$ terms. As a simple consequence, the latter result holds in $\mathbb Z[x]$ after replacing ‘number of terms’ by the L1-norm of a polynomial and $6.7\log n$ by $6.8\log n$. This improves the bound $(\log n)^{\log 4 +\operatorname{\varepsilon}}$ obtained by Filaseta and Moy.
We study the counts of smooth permutations and smooth polynomials over finite fields. For both counts we prove an estimate with an error term that matches the error term found in the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman $\rho$ function, but with its argument shifted.
We determine the order of magnitude of $\log(p_{n,m}/\rho(n/m))$ where $p_{n,m}$ is the probability that a permutation on n elements, chosen uniformly at random, is m-smooth.
We uncover a phase transition in the polynomial setting: the probability that a polynomial of degree n in $\mathbb{F}_q$ is m-smooth changes its behaviour at $m\approx (3/2)\log_q n$.
For fixed m and a, we give an explicit description of those subsets of ${\mathbb F}_{q}$, q odd, for which both x and $mx+a$ are quadratic residues (and other combinations). These results extend and refine results that date back to Gauss.
Let p be a prime number. Let $n\geq 2$ be an integer given by $n = p^{m_1} + p^{m_2} + \cdots + p^{m_r}$, where $0\leq m_1 < m_2 < \cdots < m_r$ are integers. Let $a_0, a_1, \ldots , a_{n-1}$ be integers not divisible by p. Let $K = \mathbb Q(\theta )$ be an algebraic number field with $\theta \in {\mathbb C}$ a root of an irreducible polynomial $f(x) = \sum _{i=0}^{n-1}a_i{x^i}/{i!} + {x^n}/{n!}$ over the field $\mathbb Q$ of rationals. We prove that p divides the common index divisor of K if and only if $r>p$. In particular, if $r>p$, then K is always nonmonogenic. As an application, we show that if $n \geq 3$ is an odd integer such that $n-1\neq 2^s$ for $s\in {\mathbb Z}$ and K is a number field generated by a root of a truncated exponential Taylor polynomial of degree n, then K is always nonmonogenic.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
In this paper, we provide an application to the random distance-t walk in finite planes and derive asymptotic formulas (as $q \to \infty $) for the probability of return to start point after $\ell $ steps based on the “vertical” equidistribution of Kloosterman sums established by N. Katz. This work relies on a “Euclidean” association scheme studied in prior work of W. M. Kwok, E. Bannai, O. Shimabukuro, and H. Tanaka. We also provide a self-contained computation of the P-matrix and intersection numbers of this scheme for convenience in our application as well as a more explicit form for the intersection numbers in the planar case.
In this paper, we provide a general framework for counting geometric structures in pseudo-random graphs. As applications, our theorems recover and improve several results on the finite field analog of questions originally raised in the continuous setting. The results present interactions between discrete geometry, geometric measure theory, and graph theory.
We introduce a new concept of rank – relative rank associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with Schmidt rank (also called strength). We also introduce the notion of relative bias. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is polynomial in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials $\mathcal P=(P_i)_{i=1}^c$ of degrees $\le d$ in a polynomial ring over an algebraically closed field of characteristic $>d$ is contained in an ideal $\mathcal I({\mathcal Q})$, generated by a collection ${\mathcal Q}$ of polynomials of degrees $\le d$ which form a regular sequence, and ${\mathcal Q}$ is of size $\le A c^{A}$, where $A=A(d)$ is independent of the number of variables.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.