We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
Let q be a power of a prime p, let $\mathbb F_q$ be the finite field with q elements and, for each nonconstant polynomial $F\in \mathbb F_{q}[X]$ and each integer $n\ge 1$, let $s_F(n)$ be the degree of the splitting field (over $\mathbb F_q$) of the iterated polynomial $F^{(n)}(X)$. In 1999, Odoni proved that $s_A(n)$ grows linearly with respect to n if $A\in \mathbb F_q[X]$ is an additive polynomial not of the form $aX^{p^h}$; moreover, if q = p and $B(X)=X^p-X$, he obtained the formula $s_{B}(n)=p^{\lceil \log_p n\rceil}$. In this paper we note that $s_F(n)$ grows at least linearly unless $F\in \mathbb F_q[X]$ has an exceptional form and we obtain a stronger form of Odoni’s result, extending it to affine polynomials. In particular, we prove that if A is additive, then $s_A(n)$ resembles the step function $p^{\lceil \log_p n\rceil}$ and we indeed have the identity $s_A(n)=\alpha p^{\lceil \log_p \beta n\rceil}$ for some $\alpha, \beta\in \mathbb Q$, unless A presents a special irregularity of dynamical flavour. As applications of our main result, we obtain statistics for periodic points of linear maps over $\mathbb F_{q^i}$ as $i\to +\infty$ and for the factorization of iterates of affine polynomials over finite fields.
In this article, we establish a function field analog of Jacobi’s theorem on sums of squares and analyze its moments. Our approach involves employing two distinct techniques to derive the main results concerning asymptotic formulas for the moments. The first technique utilizes Dirichlet series framework to derive asymptotic formulas in the limit of large finite fields, specifically when the characteristic of $\mathbb {F}_q[T]$ becomes large. The second technique involves effectively partitioning the set of polynomials of a fixed degree, providing asymptotic formulas in the limit of large polynomial degree.
Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we build upon and extend some results of Sawin and Shusterman (2022). These results include bounds for exponential sums weighted by the Möbius function and a level of distribution for irreducible polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond 1/2.
Let p be a prime, $q=p^n$, and $D \subset \mathbb {F}_q^*$. A celebrated result of McConnel states that if D is a proper subgroup of $\mathbb {F}_q^*$, and $f:\mathbb {F}_q \to \mathbb {F}_q$ is a function such that $(f(x)-f(y))/(x-y) \in D$ whenever $x \neq y$, then $f(x)$ necessarily has the form $ax^{p^j}+b$. In this notes, we give a sufficient condition on D to obtain the same conclusion on f. In particular, we show that McConnel’s theorem extends if D has small doubling.
Let f(x) and g(x) be polynomials in $\mathbb F_{2}[x]$ with ${\rm deg}\text{ } f=n$. It is shown that for $n\gg 1$, there is an $g_{1}(x)\in \mathbb F_{2}[x]$ with ${\rm deg}\text{ } g_{1}\leqslant \max\{{\rm deg}\text{ } g, 6.7\log n\}$ and $g(x)-g_{1}(x)$ having $ \lt 6.7\log n$ terms such that $\gcd(f(x), g_{1}(x))=1$. As an application, it is established using a result of Dubickas and Sha that given $f(x)\in \mathbb F_{2}[x]$ of degree $n\geqslant 1$, there is a separable $g(x)\in 2[x]$ with ${\rm deg}\text{ } g= {\rm deg}\text{ } f$ and satisfying that $f(x)-g(x)$ has $\leqslant 6.7\log n$ terms. As a simple consequence, the latter result holds in $\mathbb Z[x]$ after replacing ‘number of terms’ by the L1-norm of a polynomial and $6.7\log n$ by $6.8\log n$. This improves the bound $(\log n)^{\log 4 +\operatorname{\varepsilon}}$ obtained by Filaseta and Moy.
We study the counts of smooth permutations and smooth polynomials over finite fields. For both counts we prove an estimate with an error term that matches the error term found in the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman $\rho$ function, but with its argument shifted.
We determine the order of magnitude of $\log(p_{n,m}/\rho(n/m))$ where $p_{n,m}$ is the probability that a permutation on n elements, chosen uniformly at random, is m-smooth.
We uncover a phase transition in the polynomial setting: the probability that a polynomial of degree n in $\mathbb{F}_q$ is m-smooth changes its behaviour at $m\approx (3/2)\log_q n$.
For fixed m and a, we give an explicit description of those subsets of ${\mathbb F}_{q}$, q odd, for which both x and $mx+a$ are quadratic residues (and other combinations). These results extend and refine results that date back to Gauss.
Let p be a prime number. Let $n\geq 2$ be an integer given by $n = p^{m_1} + p^{m_2} + \cdots + p^{m_r}$, where $0\leq m_1 < m_2 < \cdots < m_r$ are integers. Let $a_0, a_1, \ldots , a_{n-1}$ be integers not divisible by p. Let $K = \mathbb Q(\theta )$ be an algebraic number field with $\theta \in {\mathbb C}$ a root of an irreducible polynomial $f(x) = \sum _{i=0}^{n-1}a_i{x^i}/{i!} + {x^n}/{n!}$ over the field $\mathbb Q$ of rationals. We prove that p divides the common index divisor of K if and only if $r>p$. In particular, if $r>p$, then K is always nonmonogenic. As an application, we show that if $n \geq 3$ is an odd integer such that $n-1\neq 2^s$ for $s\in {\mathbb Z}$ and K is a number field generated by a root of a truncated exponential Taylor polynomial of degree n, then K is always nonmonogenic.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
In this paper, we provide an application to the random distance-t walk in finite planes and derive asymptotic formulas (as $q \to \infty $) for the probability of return to start point after $\ell $ steps based on the “vertical” equidistribution of Kloosterman sums established by N. Katz. This work relies on a “Euclidean” association scheme studied in prior work of W. M. Kwok, E. Bannai, O. Shimabukuro, and H. Tanaka. We also provide a self-contained computation of the P-matrix and intersection numbers of this scheme for convenience in our application as well as a more explicit form for the intersection numbers in the planar case.
In this paper, we provide a general framework for counting geometric structures in pseudo-random graphs. As applications, our theorems recover and improve several results on the finite field analog of questions originally raised in the continuous setting. The results present interactions between discrete geometry, geometric measure theory, and graph theory.
We introduce a new concept of rank – relative rank associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with Schmidt rank (also called strength). We also introduce the notion of relative bias. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is polynomial in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials $\mathcal P=(P_i)_{i=1}^c$ of degrees $\le d$ in a polynomial ring over an algebraically closed field of characteristic $>d$ is contained in an ideal $\mathcal I({\mathcal Q})$, generated by a collection ${\mathcal Q}$ of polynomials of degrees $\le d$ which form a regular sequence, and ${\mathcal Q}$ is of size $\le A c^{A}$, where $A=A(d)$ is independent of the number of variables.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
We obtain new bounds on short Weil sums over small multiplicative subgroups of prime finite fields which remain nontrivial in the range the classical Weil bound is already trivial. The method we use is a blend of techniques coming from algebraic geometry and additive combinatorics.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
Given $A\subseteq GL_2(\mathbb {F}_q)$, we prove that there exist disjoint subsets $B, C\subseteq A$ such that $A = B \sqcup C$ and their additive and multiplicative energies satisfying
In this paper, we study the stability of the ring solution of the N-body problem in the entire sphere $\mathbb {S}^2$ by using the logarithmic potential proposed in Boatto et al. (2016, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 472, 20160020) and Dritschel (2019, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 377, 20180349), derived through a definition of central force and Hodge decomposition theorem for 1-forms in manifolds. First, we characterize the ring solution and study its spectral stability, obtaining regions (spherical caps) where the ring solution is spectrally stable for $2\leq N\leq 6$, while, for $N\geq 7$, the ring is spectrally unstable. The nonlinear stability is studied by reducing the system to the homographic regular polygonal solutions, obtaining a 2-d.o.f. Hamiltonian system, and therefore some classic results on stability for 2-d.o.f. Hamiltonian systems are applied to prove that the ring solution is unstable at any parallel where it is placed. Additionally, this system can be reduced to 1-d.o.f. by using the angular momentum integral, which enables us to describe the phase portraits and use them to find periodic ring solutions to the full system. Some of those solutions are numerically approximated.
Let q be an odd prime power and suppose that $a,b\in \mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$. Denote by $\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\alpha \approx 0.029\,08$ and $\beta \approx 0.012\,59$ such that if $q\equiv 1 \bmod 4$, then $\lim \sigma (q)/q^2 = \alpha $, and if $q \equiv 3 \bmod 4$, then $\lim \sigma (q)/q^2 = \beta $.