To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extending the notion of regularity introduced by Dickson in 1939, a positive definite ternary integral quadratic form is said to be spinor regular if it represents all the positive integers represented by its spinor genus (that is, all positive integers represented by any form in its spinor genus). Jagy conducted an extensive computer search for primitive ternary quadratic forms that are spinor regular, but not regular, resulting in a list of 29 such forms. In this paper, we will prove that there are no additional forms with this property.
In this paper we investigate the moments and the distribution of $L(1,\unicode[STIX]{x1D712}_{D})$, where $\unicode[STIX]{x1D712}_{D}$ varies over quadratic characters associated to square-free polynomials $D$ of degree $n$ over $\mathbb{F}_{q}$, as $n\rightarrow \infty$. Our first result gives asymptotic formulas for the complex moments of $L(1,\unicode[STIX]{x1D712}_{D})$ in a large uniform range. Previously, only the first moment has been computed due to the work of Andrade and Jung. Using our asymptotic formulas together with the saddle-point method, we show that the distribution function of $L(1,\unicode[STIX]{x1D712}_{D})$ is very close to that of a corresponding probabilistic model. In particular, we uncover an interesting feature in the distribution of large (and small) values of $L(1,\unicode[STIX]{x1D712}_{D})$, which is not present in the number field setting. We also obtain $\unicode[STIX]{x1D6FA}$-results for the extreme values of $L(1,\unicode[STIX]{x1D712}_{D})$, which we conjecture to be the best possible. Specializing $n=2g+1$ and making use of one case of Artin’s class number formula, we obtain similar results for the class number $h_{D}$ associated to $\mathbb{F}_{q}(T)[\sqrt{D}]$. Similarly, specializing to $n=2g+2$ we can appeal to the second case of Artin’s class number formula and deduce analogous results for $h_{D}R_{D}$, where $R_{D}$ is the regulator of $\mathbb{F}_{q}(T)[\sqrt{D}]$.
Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.
In 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
We consider the problem of counting the number of rational points of bounded height in the zero-loci of Brauer group elements on semi-simple algebraic groups over number fields. We obtain asymptotic formulae for the counting problem for wonderful compactifications using the spectral theory of automorphic forms. Applications include asymptotic formulae for the number of matrices over $\mathbb{Q}$ whose determinant is a sum of two squares. These results provide a positive answer to some cases of a question of Serre concerning such counting problems.
We establish several new metrical results on the distribution properties of the sequence ({xn})n≥1, where {·} denotes the fractional part. Many of them are presented in a more general framework, in which the sequence of functions (x ↦ xn)n≥1 is replaced by a sequence (fn)n≥1, under some growth and regularity conditions on the functions fn.
Let $n$ be a positive integer. We obtain new Menon’s identities by using the actions of some subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ on the set $\mathbb{Z}/n\mathbb{Z}$. In particular, let $p$ be an odd prime and let $\unicode[STIX]{x1D6FC}$ be a positive integer. If $H_{k}$ is a subgroup of $(\mathbb{Z}/p^{\unicode[STIX]{x1D6FC}}\mathbb{Z})^{\times }$ with index $k=p^{\unicode[STIX]{x1D6FD}}u$ such that $0\leqslant \unicode[STIX]{x1D6FD}<\unicode[STIX]{x1D6FC}$ and $u\mid p-1$, then
For a given set $S\subset \mathbb{N}$, $R_{S}(n)$ is the number of solutions of the equation $n=s+s^{\prime },s<s^{\prime },s,s^{\prime }\in S$. Suppose that $m$ and $r$ are integers with $m>r\geq 0$ and that $A$ and $B$ are sets with $A\cup B=\mathbb{N}$ and $A\cap B=\{r+mk:k\in \mathbb{N}\}$. We prove that if $R_{A}(n)=R_{B}(n)$ for all positive integers $n$, then there exists an integer $l\geq 1$ such that $r=2^{2l}-1$ and $m=2^{2l+1}-1$. This solves a problem of Chen and Lev [‘Integer sets with identical representation functions’, Integers16 (2016), A36] under the condition $m>r$.
Let $\mathfrak{D}$ be a residually finite Dedekind domain and let $\mathfrak{n}$ be a nonzero ideal of $\mathfrak{D}$. We consider counting problems for the ideal chains in $\mathfrak{D}/\mathfrak{n}$. By using the Cauchy–Frobenius–Burnside lemma, we also obtain some further extensions of Menon’s identity.
Let $p\equiv 1\hspace{0.2em}{\rm mod}\hspace{0.2em}4$ be a prime number. We use a number field variant of Vinogradov’s method to prove density results about the following four arithmetic invariants: (i) $16$-rank of the class group $\text{Cl}(-4p)$ of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-4p})$; (ii) $8$-rank of the ordinary class group $\text{Cl}(8p)$ of the real quadratic field $\mathbb{Q}(\sqrt{8p})$; (iii) the solvability of the negative Pell equation $x^{2}-2py^{2}=-1$ over the integers; (iv) $2$-part of the Tate–Šafarevič group $\unicode[STIX]{x0428}(E_{p})$ of the congruent number elliptic curve $E_{p}:y^{2}=x^{3}-p^{2}x$. Our results are conditional on a standard conjecture about short character sums.
Halász’s theorem gives an upper bound for the mean value of a multiplicative function $f$. The bound is sharp for general such $f$, and, in particular, it implies that a multiplicative function with $|f(n)|\leqslant 1$ has either mean value $0$, or is ‘close to’ $n^{it}$ for some fixed $t$. The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions. We use these results to obtain new, arguably simpler, proofs that there are always primes in short intervals (Hoheisel’s theorem), and that there are always primes near to the start of an arithmetic progression (Linnik’s theorem).
Green and Tao famously proved in 2005 that any subset of the primes of fixed positive density contains arbitrarily long arithmetic progressions. Green had previously shown that, in fact, any subset of the primes of relative density tending to zero sufficiently slowly contains a three-term progression. This was followed by work of Helfgott and de Roton, and Naslund, who improved the bounds on the relative density in the case of three-term progressions. The aim of this note is to present an analogous result for longer progressions by combining a quantified version of the relative Szemerédi theorem given by Conlon, Fox and Zhao with Henriot's estimates of the enveloping sieve weights.
In unpublished notes, Pila discussed some theory surrounding the modular function j and its derivatives. A focal point of these notes was the statement of two conjectures regarding j, j′ and j″: a Zilber–Pink-type statement incorporating j, j′ and j″, which was an extension of an apparently weaker conjecture of André–Oort type. In this paper, I first cover some background regarding j, j′ and j″, mostly covering the work already done by Pila. Then I use a seemingly novel adaptation of the o-minimal Pila–Zannier strategy to prove a weakened version of Pila's ‘Modular André–Oort with Derivatives’ conjecture. Under the assumption of a certain number-theoretic conjecture, the central theorem of the paper implies Pila's conjecture in full generality, as well as a more precise statement along the same lines.
Let $p$ be a prime and let $G$ be a finite group. By a celebrated theorem of Swan, two finitely generated projective $\mathbb{Z}_{p}[G]$-modules $P$ and $P^{\prime }$ are isomorphic if and only if $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P$ and $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P^{\prime }$ are isomorphic as $\mathbb{Q}_{p}[G]$-modules. We prove an Iwasawa-theoretic analogue of this result and apply this to the Iwasawa theory of local and global fields. We thereby determine the structure of natural Iwasawa modules up to (pseudo-)isomorphism.
We investigate the Galois structures of $p$-adic cohomology groups of general $p$-adic representations over finite extensions of number fields. We show, in particular, that as the field extensions vary over natural families the Galois modules formed by these cohomology groups always decompose as the direct sum of a projective module and a complementary module of bounded $p$-rank. We use this result to derive new (upper and lower) bounds on the changes in ranks of Selmer groups over extensions of number fields and descriptions of the explicit Galois structures of natural arithmetic modules.
We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
We prove, under some assumptions, a Greenberg type equality relating the characteristic power series of the Selmer groups over $\mathbb{Q}$ of higher symmetric powers of the Galois representation associated to a Hida family and congruence ideals associated to (different) higher symmetric powers of that Hida family. We use $R=T$ theorems and a sort of induction based on branching laws for adjoint representations. This method also applies to other Langlands transfers, like the transfer from $\text{GSp}(4)$ to $U(4)$. In that case we obtain a corollary for abelian surfaces.
We finalize the analysis of the trace formula initiated in S. A. Altuğ [Beyond endoscopy via the trace formula-I: Poisson summation and isolation of special representations, Compos. Math.151(10) (2015), 1791–1820] and developed in S. A. Altuğ [Beyond endoscopy via the trace formula-II: asymptotic expansions of Fourier transforms and bounds toward the Ramanujan conjecture. Submitted, preprint, 2015, Available at:arXiv:1506.08911.pdf], and calculate the asymptotic expansion of the beyond endoscopic averages for the standard $L$-functions attached to weight $k\geqslant 3$ cusp forms on $\mathit{GL}(2)$ (cf. Theorem 1.1). This, in particular, constitutes the first example of beyond endoscopy executed via the Arthur–Selberg trace formula, as originally proposed in R. P. Langlands [Beyond endoscopy, in Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 611–698 (The Johns Hopkins University Press, Baltimore, MD, 2004), chapter 22]. As an application we also give a new proof of the analytic continuation of the $L$-function attached to Ramanujan’s $\unicode[STIX]{x1D6E5}$-function.
Let $q\geq 1$ be any integer and let $\unicode[STIX]{x1D716}\in [\frac{1}{11},\frac{1}{2})$ be a given real number. We prove that for all primes $p$ satisfying