To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the function $f(n)$ that enumerates partitions of weight $n$ wherein each part appears an odd number of times. Chern [‘Unlimited parity alternating partitions’, Quaest. Math. (to appear)] noted that such partitions can be placed in one-to-one correspondence with the partitions of $n$ which he calls unlimited parity alternating partitions with smallest part odd. Our goal is to study the parity of $f(n)$ in detail. In particular, we prove a characterisation of $f(2n)$ modulo 2 which implies that there are infinitely many Ramanujan-like congruences modulo 2 satisfied by the function $f.$ The proof techniques are elementary and involve classical generating function dissection tools.
Let $p$ and $\ell$ be distinct primes, and let $\overline{\unicode[STIX]{x1D70C}}$ be an orthogonal or symplectic representation of the absolute Galois group of an $\ell$-adic field over a finite field of characteristic $p$. We define and study a liftable deformation condition of lifts of $\overline{\unicode[STIX]{x1D70C}}$ ‘ramified no worse than $\overline{\unicode[STIX]{x1D70C}}$’, generalizing the minimally ramified deformation condition for $\operatorname{GL}_{n}$ studied in Clozel et al. [Automorphy for some$l$-adic lifts of automorphic mod$l$Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181; MR 2470687 (2010j:11082)]. The key insight is to restrict to deformations where an associated unipotent element does not change type when deforming. This requires an understanding of nilpotent orbits and centralizers of nilpotent elements in the relative situation, not just over fields.
We study the values of finite multiple harmonic $q$-series at a primitive root of unity and show that these specialize to the finite multiple zeta value (FMZV) and the symmetric multiple zeta value (SMZV) through an algebraic and analytic operation, respectively. Further, we prove the duality formula for these values, as an example of linear relations, which induce those among FMZVs and SMZVs simultaneously. This gives evidence towards a conjecture of Kaneko and Zagier relating FMZVs and SMZVs. Motivated by the above results, we define cyclotomic analogues of FMZVs, which conjecturally generate a vector space of the same dimension as that spanned by the finite multiple harmonic $q$-series at a primitive root of unity of sufficiently large degree.
A general conjecture is stated on the cone of automorphic vector bundles admitting nonzero global sections on schemes endowed with a smooth, surjective morphism to a stack of $G$-zips of connected Hodge type; such schemes should include all Hodge-type Shimura varieties with hyperspecial level. We prove our conjecture for groups of type $A_{1}^{n}$, $C_{2}$, and $\mathbf{F}_{p}$-split groups of type $A_{2}$ (this includes all Hilbert–Blumenthal varieties and should also apply to Siegel modular $3$-folds and Picard modular surfaces). An example is given to show that our conjecture can fail for zip data not of connected Hodge type.
Let K be a totally real number field of degree r. Let K∞ denote the cyclotomic -extension of K, and let L∞ be a finite extension of K∞, abelian over K. The goal of this paper is to compare the characteristic ideal of the χ-quotient of the projective limit of the narrow class groups to the χ-quotient of the projective limit of the rth exterior power of totally positive units modulo a subgroup of Rubin–Stark units, for some $\overline{\mathbb{Q}_{2}}$-irreducible characters χ of Gal(L∞/K∞).
Let $\{\mathbf{F}(n)\}_{n\in \mathbb{N}}$ and $\{\mathbf{G}(n)\}_{n\in \mathbb{N}}$ be linear recurrence sequences. It is a well-known Diophantine problem to determine the finiteness of the set ${\mathcal{N}}$ of natural numbers such that their ratio $\mathbf{F}(n)/\mathbf{G}(n)$ is an integer. In this paper we study an analogue of such a divisibility problem in the complex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_{0}+a_{1}f_{1}^{n}+\cdots +a_{l}f_{l}^{n}$ and $G(n)=b_{0}+b_{1}g_{1}^{n}+\cdots +b_{m}g_{m}^{n}$, where the $f_{i}$ and $g_{j}$ are nonconstant entire functions and the $a_{i}$ and $b_{j}$ are non-zero constants except that $a_{0}$ can be zero. We will show that the set ${\mathcal{N}}$ of natural numbers such that $F(n)/G(n)$ is an entire function is finite under the assumption that $f_{1}^{i_{1}}\cdots f_{l}^{i_{l}}g_{1}^{j_{1}}\cdots g_{m}^{j_{m}}$ is not constant for any non-trivial index set $(i_{1},\ldots ,i_{l},j_{1},\ldots ,j_{m})\in \mathbb{Z}^{l+m}$.
Let $k$ be an arbitrary positive integer and let $\unicode[STIX]{x1D6FE}(n)$ stand for the product of the distinct prime factors of $n$. For each integer $n\geqslant 2$, let $a_{n}$ and $b_{n}$ stand respectively for the maximum and the minimum of the $k$ integers $\unicode[STIX]{x1D6FE}(n+1),\unicode[STIX]{x1D6FE}(n+2),\ldots ,\unicode[STIX]{x1D6FE}(n+k)$. We show that $\liminf _{n\rightarrow \infty }a_{n}/b_{n}=1$. We also prove that the same result holds in the case of the Euler function and the sum of the divisors function, as well as the functions $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, which stand respectively for the number of distinct prime factors of $n$ and the total number of prime factors of $n$ counting their multiplicity.
We consider an extension of the Ramanujan series with a variable $x$. If we let $x=x_{0}$, we call the resulting series ‘Ramanujan series with the shift $x_{0}$’. Then we relate these shifted series to some $q$-series and solve the case of level $4$ with the shift $x_{0}=1/2$. Finally, we indicate a possible way towards proving some patterns observed by the author corresponding to the levels $\ell =1,2,3$ and the shift $x_{0}=1/2$.
Let $\unicode[STIX]{x1D70F}(\cdot )$ be the classical Ramanujan $\unicode[STIX]{x1D70F}$-function and let $k$ be a positive integer such that $\unicode[STIX]{x1D70F}(n)\neq 0$ for $1\leqslant n\leqslant k/2$. (This is known to be true for $k<10^{23}$, and, conjecturally, for all $k$.) Further, let $\unicode[STIX]{x1D70E}$ be a permutation of the set $\{1,\ldots ,k\}$. We show that there exist infinitely many positive integers $m$ such that $|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(1))|<|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(2))|<\cdots <|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(k))|$. We also obtain a similar result for Hecke eigenvalues of primitive forms of square-free level.
Let $\mathbf{f}=(f_{1},\ldots ,f_{R})$ be a system of polynomials with integer coefficients in which the degrees need not all be the same. We provide sufficient conditions for which the system of equations $f_{j}(x_{1},\ldots ,x_{n})=0~(1\leqslant j\leqslant R)$ satisfies a general local to global type statement, and has a solution where each coordinate is prime. In fact we obtain the asymptotic formula for number of such solutions, counted with a logarithmic weight, under these conditions. We prove the statement via the Hardy–Littlewood circle method. This is a generalization of the work of Cook and Magyar [‘Diophantine equations in the primes’, Invent. Math.198 (2014), 701–737], where they obtained the result when the polynomials of $\mathbf{f}$ all have the same degree. Hitherto, results of this type for systems of polynomial equations involving different degrees have been restricted to the diagonal case.
The cardinality of the set of $D\leqslant x$ for which the fundamental solution of the Pell equation $t^{2}-Du^{2}=1$ is less than $D^{1/2+\unicode[STIX]{x1D6FC}}$ with $\unicode[STIX]{x1D6FC}\in [\frac{1}{2},1]$ is studied and certain lower bounds are obtained, improving previous results of Fouvry by introducing the $q$-analogue of van der Corput method to algebraic exponential sums with smooth moduli.
When $p$ is inert in the quadratic imaginary field $E$ and $m<n$, unitary Shimura varieties of signature $(n,m)$ and a hyperspecial level subgroup at $p$, carry a natural foliationof height 1 and rank $m^{2}$ in the tangent bundle of their special fiber $S$. We study this foliation and show that it acquires singularities at deep Ekedahl–Oort strata, but that these singularities are resolved if we pass to a natural smooth moduli problem $S^{\sharp }$, a successive blow-up of $S$. Over the ($\unicode[STIX]{x1D707}$-)ordinary locus we relate the foliation to Moonen’s generalized Serre–Tate coordinates. We study the quotient of $S^{\sharp }$ by the foliation, and identify it as the Zariski closure of the ordinary-étale locus in the special fiber $S_{0}(p)$ of a certain Shimura variety with parahoric level structure at $p$. As a result, we get that this ‘horizontal component’ of $S_{0}(p)$, as well as its multiplicative counterpart, are non-singular (formerly they were only known to be normal and Cohen–Macaulay). We study two kinds of integral manifolds of the foliation: unitary Shimura subvarieties of signature $(m,m)$, and a certain Ekedahl–Oort stratum that we denote $S_{\text{fol}}$. We conjecture that these are the only integral submanifolds.
A comprehensive study of the generalized Lambert series $\sum _{n=1}^{\infty }\frac{n^{N-2h}\text{exp}(-an^{N}x)}{1-\text{exp}(-n^{N}x)},0<a\leqslant 1,~x>0$, $N\in \mathbb{N}$ and $h\in \mathbb{Z}$, is undertaken. Several new transformations of this series are derived using a deep result on Raabe’s cosine transform that we obtain here. Three of these transformations lead to two-parameter generalizations of Ramanujan’s famous formula for $\unicode[STIX]{x1D701}(2m+1)$ for $m>0$, the transformation formula for the logarithm of the Dedekind eta function and Wigert’s formula for $\unicode[STIX]{x1D701}(1/N),N$ even. Numerous important special cases of our transformations are derived, for example, a result generalizing the modular relation between the Eisenstein series $E_{2}(z)$ and $E_{2}(-1/z)$. An identity relating $\unicode[STIX]{x1D701}(2N+1),\unicode[STIX]{x1D701}(4N+1),\ldots ,\unicode[STIX]{x1D701}(2Nm+1)$ is obtained for $N$ odd and $m\in \mathbb{N}$. In particular, this gives a beautiful relation between $\unicode[STIX]{x1D701}(3),\unicode[STIX]{x1D701}(5),\unicode[STIX]{x1D701}(7),\unicode[STIX]{x1D701}(9)$ and $\unicode[STIX]{x1D701}(11)$. New results involving infinite series of hyperbolic functions with $n^{2}$ in their arguments, which are analogous to those of Ramanujan and Klusch, are obtained.
In this paper, we investigate the distribution of the maximum of partial sums of certain cubic exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds (of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The results can also be generalized to other types of $\ell$-adic trace functions. In particular, the lower bound of our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist $x\in [1,p]$ and $a\in \mathbb{F}_{p}^{\times }$ such that $|\sum _{n\leqslant x}\exp (2\unicode[STIX]{x1D70B}i(n^{3}+an)/p)|\geqslant (2/\unicode[STIX]{x1D70B}+o(1))\sqrt{p}\log \log p$. The uniformity of our results suggests that this bound is optimal, up to the value of the constant.
We study several kinds of subschemes of mixed characteristic models of Shimura varieties which admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications and formal local structures, as if they were Shimura varieties in characteristic zero. We also generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
In 2005, using a famous lemma of Atkin and Swinnerton-Dyer (Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84–106), Yesilyurt (Four identities related to third order mock theta functions in Ramanujan’s lost notebook, Adv. Math. 190 (2005), 278–299) proved four identities for third order mock theta functions found on pages 2 and 17 in Ramanujan’s lost notebook. The primary purpose of this paper is to offer new proofs in the spirit of what Ramanujan might have given in the hope that a better understanding of the identities might be gained. Third order mock theta functions are intimately connected with ranks of partitions. We prove new dissections for two rank generating functions, which are keys to our proof of the fourth, and the most difficult, of Ramanujan’s identities. In the last section of this paper, we establish new relations for ranks arising from our dissections of rank generating functions.
For a certain class of hypergeometric functions $_{3}F_{2}$ with rational parameters, we give a sufficient condition for the special value at $1$ to be expressed in terms of logarithms of algebraic numbers. We give two proofs, both of which are algebro-geometric and related to higher regulators.
We show that two distinct singular moduli $j(\unicode[STIX]{x1D70F}),j(\unicode[STIX]{x1D70F}^{\prime })$, such that for some positive integers $m$ and $n$ the numbers $1,j(\unicode[STIX]{x1D70F})^{m}$ and $j(\unicode[STIX]{x1D70F}^{\prime })^{n}$ are linearly dependent over $\mathbb{Q}$, generate the same number field of degree at most two. This completes a result of Riffaut [‘Equations with powers of singular moduli’, Int. J. Number Theory, to appear], who proved the above theorem except for two explicit pairs of exceptions consisting of numbers of degree three. The purpose of this article is to treat these two remaining cases.