To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using work of the first author [S. Bettin, High moments of the Estermann function. Algebra Number Theory47(3) (2018), 659–684], we prove a strong version of the Manin–Peyre conjectures with a full asymptotic and a power-saving error term for the two varieties respectively in $\mathbb{P}^{2}\times \mathbb{P}^{2}$ with bihomogeneous coordinates $[x_{1}:x_{2}:x_{3}],[y_{1}:y_{2},y_{3}]$ and in $\mathbb{P}^{1}\times \mathbb{P}^{1}\times \mathbb{P}^{1}$ with multihomogeneous coordinates $[x_{1}:y_{1}],[x_{2}:y_{2}],[x_{3}:y_{3}]$ defined by the same equation $x_{1}y_{2}y_{3}+x_{2}y_{1}y_{3}+x_{3}y_{1}y_{2}=0$. We thus improve on recent work of Blomer et al [The Manin–Peyre conjecture for a certain biprojective cubic threefold. Math. Ann.370 (2018), 491–553] and provide a different proof based on a descent on the universal torsor of the conjectures in the case of a del Pezzo surface of degree 6 with singularity type $\mathbf{A}_{1}$ and three lines (the other existing proof relying on harmonic analysis by Chambert-Loir and Tschinkel [On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math.148 (2002), 421–452]). Together with Blomer et al [On a certain senary cubic form. Proc. Lond. Math. Soc.108 (2014), 911–964] or with work of the second author [K. Destagnol, La conjecture de Manin pour une famille de variétés en dimension supérieure. Math. Proc. Cambridge Philos. Soc.166(3) (2019), 433–486], this settles the study of the Manin–Peyre conjectures for this equation.
We study the number of non-trivial simple zeros of the Dedekind zeta-function of a quadratic number field in the rectangle $\{\unicode[STIX]{x1D70E}+\text{i}t:0<\unicode[STIX]{x1D70E}<1,0<t<T\}$. We prove that such a number exceeds $T^{6/7-\unicode[STIX]{x1D700}}$ if $T$ is sufficiently large. This improves upon the classical lower bound $T^{6/11}$ established by Conrey et al [Simple zeros of the zeta function of a quadratic number field. I. Invent. Math.86 (1986), 563–576].
We establish asymptotic formulae for the number of $k$-free values of square-free polynomials $F(x_{1},\ldots ,x_{n})\in \mathbb{Z}[x_{1},\ldots ,x_{n}]$ of degree $d\geqslant 2$ for any $n\geqslant 1$, including when the variables are prime, as long as $k\geqslant (3d+1)/4$. This generalizes a work of Browning.
We prove a range of new sum-product type growth estimates over a general field $\mathbb{F}$, in particular the special case $\mathbb{F}=\mathbb{F}_{p}$. They are unified by the theme of “breaking the $3/2$ threshold”, epitomizing the previous state of the art. This concerns two questions pivotal for the sum-product theory, which are lower bounds for the number of distinct cross-ratios determined by a finite subset of $\mathbb{F}$, as well as the number of values of the symplectic form determined by a finite subset of $\mathbb{F}^{2}$. We establish the estimate $|R[A]|\gtrsim |A|^{8/5}$ for cardinality of the set $R[A]$ of distinct cross-ratios, defined by triples of elements of a set $A\subset \mathbb{F}$ (sufficiently small if $\mathbb{F}$ has positive characteristic, similarly for the rest of the estimates), pinned at infinity. The cross-ratio bound enables us to break the threshold in the second question: for a non-collinear point set $P\subset \mathbb{F}^{2}$, the number of distinct values of the symplectic form $\unicode[STIX]{x1D714}$ on pairs of distinct points $u,u^{\prime }$ of $P$ is $|\unicode[STIX]{x1D714}(P)|\gtrsim |P|^{2/3+c}$, with an explicit $c$. Symmetries of the cross-ratio underlie its local growth properties under both addition and multiplication, yielding an onset of growth of products of difference sets, which is another main result herein. Our proofs make use of specially suited applications of new incidence bounds over $\mathbb{F}$, which apply to higher moments of representation functions. The technical thrust of the paper uses additive combinatorics to relate and adapt these higher moment bounds to growth estimates. A particular instance of this is breaking the threshold in the few sums, many products question over any $\mathbb{F}$, by showing that if $A$ is sufficiently small and has additive doubling constant $M$, then $|AA|\gtrsim M^{-2}|A|^{14/9}$. This result has a second moment version, which allows for new upper bounds for the number of collinear point triples in the set $A\times A\subset \mathbb{F}^{2}$, the quantity often arising in applications of geometric incidence estimates.
We study Piatetski-Shapiro sequences $(\lfloor n^{c}\rfloor )_{n}$ modulo $m$, for non-integer $c>1$ and positive $m$, and we are particularly interested in subword occurrences in those sequences. We prove that each block $\in \{0,1\}^{k}$ of length $k<c+1$ occurs as a subword with the frequency $2^{-k}$, while there are always blocks that do not occur. In particular, those sequences are not normal. For $1<c<2$, we estimate the number of subwords from above and below, yielding the fact that our sequences are deterministic and not morphic. Finally, using the Daboussi–Kátai criterion, we prove that the sequence $\lfloor n^{c}\rfloor$ modulo $m$ is asymptotically orthogonal to multiplicative functions bounded by 1 and with mean value 0.
We prove that, for any finite set $A\subset \mathbb{Q}$ with $|AA|\leqslant K|A|$ and any positive integer $k$, the $k$-fold product set of the shift $A+1$ satisfies the bound
This result is essentially optimal when $K$ is of the order $c\log |A|$, for a sufficiently small constant $c=c(k)$. Our main tool is a multiplicative variant of the $\unicode[STIX]{x1D6EC}$-constants used in harmonic analysis, applied to Dirichlet polynomials.
The lonely runner conjecture, now over fifty years old, concerns the following problem. On a unit-length circular track, consider $m$ runners starting at the same time and place, each runner having a different constant speed. The conjecture asserts that each runner is lonely at some point in time, meaning at a distance at least $1/m$ from the others. We formulate a function field analogue, and give a positive answer in some cases in the new setting.
In this series of papers, we explore moments of derivatives of L-functions in function fields using classical analytic techniques such as character sums and approximate functional equation. The present paper is concerned with the study of mean values of derivatives of quadratic Dirichlet L-functions over function fields when the average is taken over monic and irreducible polynomials P in 𝔽q[T]. When the cardinality q of the ground field is fixed and the degree of P gets large, we obtain asymptotic formulas for the first moment of the first and the second derivative of this family of L-functions at the critical point. We also compute the full polynomial expansion in the asymptotic formulas for both mean values.
We collect some statements regarding equivalence of the parities of various class numbers and signature ranks of units in prime power cyclotomic fields. We correct some misstatements in the literature regarding these parities by providing an example of a prime cyclotomic field where the signature rank of the units and the signature rank of the circular units are not equal.
We improve some previously known deterministic algorithms for finding integer solutions $x,y$ to the exponential equation of the form $af^{x}+bg^{y}=c$ over finite fields.
We record $\binom{42}{2}+\binom{23}{2}+\binom{13}{2}=1192$ functional identities that, apart from being amazingly amusing in themselves, find application in the derivation of Ramanujan-type formulas for $1/\unicode[STIX]{x1D70B}$ and in the computation of mathematical constants.
A number field K with a ring of integers 𝒪K is called a Pólya field, if the 𝒪K-module of integer-valued polynomials on 𝒪K has a regular basis, or equivalently all its Bhargava factorial ideals are principal [1]. We generalize Leriche's criterion [8] for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of ℚ. Also, we prove for a real (resp. imaginary) Pólya S3-extension L of ℚ, at most four (resp. three) primes can be ramified. Moreover, depending on the solvability of unit norm equation over the quadratic subfield of L, we determine when these sharp upper bounds can occur.
Let C be a set of positive integers. In this paper, we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x1 + … + xn is a partition of an element in C, then at least a summand of this partition belongs to A. We use techniques of numerical semigroups to solve this problem because it is equivalent to give an algorithm that allows us to compute all the numerical semigroups which are maximals with the condition that has an empty intersection with the set C.
A subset $A$ of a finite abelian group $G$ is called $(k,l)$-sum-free if the sum of $k$ (not necessarily distinct) elements of $A$ never equals the sum of $l$ (not necessarily distinct) elements of $A$. We find an explicit formula for the maximum size of a $(k,l)$-sum-free subset in $G$ for all $k$ and $l$ in the case when $G$ is cyclic by proving that it suffices to consider $(k,l)$-sum-free intervals in subgroups of $G$. This simplifies and extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in abelian groups’, Comment. Math. Helv.79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a $(k,l)$-sum-free subset of an abelian group’, Int. J. Number Theory5(6) (2009), 953–971].
We establish finite analogues of the identities known as the Aoki–Ohno relation and the Le–Murakami relation in the theory of multiple zeta values. We use an explicit form of a generating series given by Aoki and Ohno.
We discuss the kernel of the localization map from étale motivic cohomology of a variety over a number field to étale motivic cohomology of the base change to its completions. This generalizes the Hasse principle for the Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.
The standard twist $F(s,\unicode[STIX]{x1D6FC})$ of $L$-functions $F(s)$ in the Selberg class has several interesting properties and plays a central role in the Selberg class theory. It is therefore natural to study its finer analytic properties, for example the functional equation. Here we deal with a special case, where $F(s)$ satisfies a functional equation with the same $\unicode[STIX]{x1D6E4}$-factor of the $L$-functions associated with the cusp forms of half-integral weight; for simplicity we present our results directly for such $L$-functions. We show that the standard twist $F(s,\unicode[STIX]{x1D6FC})$ satisfies a functional equation reflecting $s$ to $1-s$, whose shape is not far from a Riemann-type functional equation of degree 2 and may be regarded as a degree 2 analog of the Hurwitz–Lerch functional equation. We also deduce some results on the growth on vertical strips and on the distribution of zeros of $F(s,\unicode[STIX]{x1D6FC})$.
Let $I(n)$ denote the number of isomorphism classes of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$, and let $G(n)$ denote the number of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ counted as sets (not up to isomorphism). We prove that both $\log G(n)$ and $\log I(n)$ satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in the limit. Of note is that $\log G(n)$ is not an additive function but is closely related to the sum of squares of additive functions. We also establish the orders of magnitude of the maximal orders of $\log G(n)$ and $\log I(n)$.
where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$. We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$. In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$, a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.
In 1991, Andrews and Hickerson established a new Bailey pair and combined it with the constant term method to prove some results related to sixth-order mock theta functions. In this paper, we study how this pair gives rise to new mock theta functions in terms of Appell–Lerch sums. Furthermore, we establish some relations between these new mock theta functions and some second-order mock theta functions. Meanwhile, we obtain an identity between a second-order and a sixth-order mock theta functions. In addition, we provide the mock theta conjectures for these new mock theta functions. Finally, we discuss the dual nature between the new mock theta functions and partial theta functions.