To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We collect some statements regarding equivalence of the parities of various class numbers and signature ranks of units in prime power cyclotomic fields. We correct some misstatements in the literature regarding these parities by providing an example of a prime cyclotomic field where the signature rank of the units and the signature rank of the circular units are not equal.
We improve some previously known deterministic algorithms for finding integer solutions $x,y$ to the exponential equation of the form $af^{x}+bg^{y}=c$ over finite fields.
We record $\binom{42}{2}+\binom{23}{2}+\binom{13}{2}=1192$ functional identities that, apart from being amazingly amusing in themselves, find application in the derivation of Ramanujan-type formulas for $1/\unicode[STIX]{x1D70B}$ and in the computation of mathematical constants.
A number field K with a ring of integers 𝒪K is called a Pólya field, if the 𝒪K-module of integer-valued polynomials on 𝒪K has a regular basis, or equivalently all its Bhargava factorial ideals are principal [1]. We generalize Leriche's criterion [8] for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of ℚ. Also, we prove for a real (resp. imaginary) Pólya S3-extension L of ℚ, at most four (resp. three) primes can be ramified. Moreover, depending on the solvability of unit norm equation over the quadratic subfield of L, we determine when these sharp upper bounds can occur.
Let C be a set of positive integers. In this paper, we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x1 + … + xn is a partition of an element in C, then at least a summand of this partition belongs to A. We use techniques of numerical semigroups to solve this problem because it is equivalent to give an algorithm that allows us to compute all the numerical semigroups which are maximals with the condition that has an empty intersection with the set C.
A subset $A$ of a finite abelian group $G$ is called $(k,l)$-sum-free if the sum of $k$ (not necessarily distinct) elements of $A$ never equals the sum of $l$ (not necessarily distinct) elements of $A$. We find an explicit formula for the maximum size of a $(k,l)$-sum-free subset in $G$ for all $k$ and $l$ in the case when $G$ is cyclic by proving that it suffices to consider $(k,l)$-sum-free intervals in subgroups of $G$. This simplifies and extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in abelian groups’, Comment. Math. Helv.79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a $(k,l)$-sum-free subset of an abelian group’, Int. J. Number Theory5(6) (2009), 953–971].
We establish finite analogues of the identities known as the Aoki–Ohno relation and the Le–Murakami relation in the theory of multiple zeta values. We use an explicit form of a generating series given by Aoki and Ohno.
We discuss the kernel of the localization map from étale motivic cohomology of a variety over a number field to étale motivic cohomology of the base change to its completions. This generalizes the Hasse principle for the Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.
The standard twist $F(s,\unicode[STIX]{x1D6FC})$ of $L$-functions $F(s)$ in the Selberg class has several interesting properties and plays a central role in the Selberg class theory. It is therefore natural to study its finer analytic properties, for example the functional equation. Here we deal with a special case, where $F(s)$ satisfies a functional equation with the same $\unicode[STIX]{x1D6E4}$-factor of the $L$-functions associated with the cusp forms of half-integral weight; for simplicity we present our results directly for such $L$-functions. We show that the standard twist $F(s,\unicode[STIX]{x1D6FC})$ satisfies a functional equation reflecting $s$ to $1-s$, whose shape is not far from a Riemann-type functional equation of degree 2 and may be regarded as a degree 2 analog of the Hurwitz–Lerch functional equation. We also deduce some results on the growth on vertical strips and on the distribution of zeros of $F(s,\unicode[STIX]{x1D6FC})$.
Let $I(n)$ denote the number of isomorphism classes of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$, and let $G(n)$ denote the number of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ counted as sets (not up to isomorphism). We prove that both $\log G(n)$ and $\log I(n)$ satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in the limit. Of note is that $\log G(n)$ is not an additive function but is closely related to the sum of squares of additive functions. We also establish the orders of magnitude of the maximal orders of $\log G(n)$ and $\log I(n)$.
where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$. We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$. In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$, a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.
In 1991, Andrews and Hickerson established a new Bailey pair and combined it with the constant term method to prove some results related to sixth-order mock theta functions. In this paper, we study how this pair gives rise to new mock theta functions in terms of Appell–Lerch sums. Furthermore, we establish some relations between these new mock theta functions and some second-order mock theta functions. Meanwhile, we obtain an identity between a second-order and a sixth-order mock theta functions. In addition, we provide the mock theta conjectures for these new mock theta functions. Finally, we discuss the dual nature between the new mock theta functions and partial theta functions.
We give bounds on the error in the asymptotic approximation of the log-Gamma function $\ln \unicode[STIX]{x1D6E4}(z)$ for complex $z$ in the right half-plane. These improve on earlier bounds by Behnke and Sommer [Theorie der analytischen Funktionen einer komplexen Veränderlichen, 2nd edn (Springer, Berlin, 1962)], Spira [‘Calculation of the Gamma function by Stirling’s formula’, Math. Comp.25 (1971), 317–322], and Hare [‘Computing the principal branch of log-Gamma’, J. Algorithms25 (1997), 221–236]. We show that $|R_{k+1}(z)/T_{k}(z)|<\sqrt{\unicode[STIX]{x1D70B}k}$ for nonzero $z$ in the right half-plane, where $T_{k}(z)$ is the $k$th term in the asymptotic series, and $R_{k+1}(z)$ is the error incurred in truncating the series after $k$ terms. We deduce similar bounds for asymptotic approximation of the Riemann–Siegel theta function $\unicode[STIX]{x1D717}(t)$. We show that the accuracy of a well-known approximation to $\unicode[STIX]{x1D717}(t)$ can be improved by including an exponentially small term in the approximation. This improves the attainable accuracy for real $t>0$ from $O(\exp (-\unicode[STIX]{x1D70B}t))$ to $O(\exp (-2\unicode[STIX]{x1D70B}t))$. We discuss a similar example due to Olver [‘Error bounds for asymptotic expansions, with an application to cylinder functions of large argument’, in: Asymptotic Solutions of Differential Equations and Their Applications (ed. C. H. Wilcox) (Wiley, New York, 1964), 16–18], and a connection with the Stokes phenomenon.
In this paper, we formulate and prove a duality for cohomology of curves over perfect fields of positive characteristic with coefficients in Néron models of abelian varieties. This is a global function field version of the author’s previous work on local duality and Grothendieck’s duality conjecture. It generalizes the perfectness of the Cassels–Tate pairing in the finite base field case. The proof uses the local duality mentioned above, Artin–Milne’s global finite flat duality, the nondegeneracy of the height pairing and finiteness of crystalline cohomology. All these ingredients are organized under the formalism of the rational étale site developed earlier.
In this paper we study digit frequencies in the setting of expansions in non-integer bases, and self-affine sets with non-empty interior. Within expansions in non-integer bases we show that if $\unicode[STIX]{x1D6FD}\in (1,1.787\ldots )$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a simply normal $\unicode[STIX]{x1D6FD}$-expansion. We also prove that if $\unicode[STIX]{x1D6FD}\in (1,(1+\sqrt{5})/2)$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a $\unicode[STIX]{x1D6FD}$-expansion for which the digit frequency does not exist, and a $\unicode[STIX]{x1D6FD}$-expansion with limiting frequency of zeros $p$, where $p$ is any real number sufficiently close to $1/2$. For a class of planar self-affine sets we show that if the horizontal contraction lies in a certain parameter space and the vertical contractions are sufficiently close to $1$, then every non-trivial vertical fibre contains an interval. Our approach lends itself to explicit calculation and gives rise to new examples of self-affine sets with non-empty interior. One particular strength of our approach is that it allows for different rates of contraction in the vertical direction.
The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to $P_{k}(n)^{2}$, where $P_{k}(n)$ is the discrepancy between the volume of the $k$-dimensional sphere of radius $\sqrt{n}$ and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including $\sum P_{k}(n)^{2}e^{-n/X}$ and the Laplace transform $\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions $k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums $\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral $\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.
Furstenberg’s $\times 2\times 3$ theorem asserts that the double sequence $(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ is dense modulo one for every irrational $\unicode[STIX]{x1D6FC}$. The same holds with $2$ and $3$ replaced by any two multiplicatively independent integers. Here we obtain the same result for the sequences $((\begin{smallmatrix}m+n\\ d\end{smallmatrix})a^{m}b^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ for any non-negative integer $d$ and irrational $\unicode[STIX]{x1D6FC}$, and for the sequence $(P(m)a^{m}b^{n})_{m,n\geq 1}$, where $P$ is any polynomial with at least one irrational coefficient. Similarly to Furstenberg’s theorem, both results are obtained by considering appropriate dynamical systems.
We give the generating function of split $(n+t)$-colour partitions and obtain an analogue of Euler’s identity for split $n$-colour partitions. We derive a combinatorial relation between the number of restricted split $n$-colour partitions and the function $\unicode[STIX]{x1D70E}_{k}(\unicode[STIX]{x1D707})=\sum _{d|\unicode[STIX]{x1D707}}d^{k}$. We introduce a new class of split perfect partitions with $d(a)$ copies of each part $a$ and extend the work of Agarwal and Subbarao [‘Some properties of perfect partitions’, Indian J. Pure Appl. Math22(9) (1991), 737–743].
Let $\mathbb{N}$ be the set of all nonnegative integers. For any set $A\subset \mathbb{N}$, let $R(A,n)$ denote the number of representations of $n$ as $n=a+a^{\prime }$ with $a,a^{\prime }\in A$. There is no partition $\mathbb{N}=A\cup B$ such that $R(A,n)=R(B,n)$ for all sufficiently large integers $n$. We prove that a partition $\mathbb{N}=A\cup B$ satisfies $|R(A,n)-R(B,n)|\leq 1$ for all nonnegative integers $n$ if and only if, for each nonnegative integer $m$, exactly one of $2m+1$ and $2m$ is in $A$.